首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
Flow from artificial subsurface (tile) drainage systems may be contributing to increasing baseflow in Midwestern rivers and increased losses of nitrate‐nitrogen. Standard hydrograph analysis techniques were applied to model simulation output and field monitoring from tile‐drained landscapes to explore how flow from drainage tiles affects stream baseflow and streamflow recession characteristics. DRAINMOD was used to simulate hydrologic response from drained (24 m tile spacing) and undrained agricultural systems. Hydrograph analysis was conducted using programs PART and RECESS. Field monitoring data were obtained from several monitoring sites in Iowa typical of heavily drained and less‐drained regions. Results indicate that flow from tile drainage primarily affects the baseflow portion of a hydrograph, increasing annual baseflow in streams with seasonal increases primarily occurring in the late spring and early summer months. Master recession curves from tile‐drained watersheds appear to be more linear than less‐tiled watersheds although comparative results of the recession index k were inconsistent. Considering the magnitude of non‐point source pollutant loads coming from tile‐drained landscapes, it is critical that more in‐depth research and analysis be done to assess the effects of tile drainage on watershed hydrology if water quality solutions are to be properly evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Heejun Chang 《水文研究》2007,21(2):211-222
This study investigates changes in streamflow characteristics for urbanizing watersheds in the Portland Metropolitan Area of Oregon for the period from 1951 to 2000. The objective of this study was to assess how mean annual runoff ratio, mean seasonal runoff ratio, annual peak runoff ratio, changes in streamflow in response to storm amount, the fraction of time that the daily mean flow exceeds the annual mean flow, 3‐day recession constants, and dry/wet flow ratio vary among watersheds with different degrees of urban development. There were no statistically significant changes in annual runoff ratio and annual peak runoff ratio for the mixed land‐use watershed (Tualatin River watershed) and the urban watershed (Johnson Creek watershed) during the entire study period. The Tualatin River watershed, where most of the urban development occurred in a lower part of the watershed, showed a statistically significant increase in annual peak runoff ratio during the 1976 and 2000 period. The Upper Tualatin River watershed illustrated a significant decrease in annual peak runoff ratio for the entire study period. With significant differences in seasonal runoff ratio, only Johnson Creek exhibited a significant increase in both wet and dry season runoff ratios. Streamflow during storm events declined rapidly in the urban watershed, with a high 3‐day recession constant. At an event storm scale, streamflow in Fanno Creek, which is the most urbanized watershed, responded quickly to precipitation input. The fraction of time that the daily mean flow exceeded the annual mean flow and dry/wet flow ratio are all lower in Johnson Creek. This suggests a shorter duration of storm runoff and lower baseflow in the urbanized watershed when compared to the mixed land use watershed. The findings of this study demonstrate the importance of spatial and temporal scale, climate variability, and basin physiographic characteristics in detecting the hydrologic effects of urbanization in the Pacific Northwest of the USA. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Investigating the changes in streamflow regimes in response to various influencing factors contributes to our understanding of the mechanisms of hydrological processes in different watersheds and to water resource management strategies. This study examined streamflow regime changes by applying the indicators of hydrologic alteration method and eco-flow metrics to daily runoff data (1965–2016) from the Sandu, Hulu and Dali Rivers on the Chinese Loess Plateau, and then determined their responses to terracing, afforestation and damming. The Budyko water balance equation and the double mass curve method were used to separate the impacts of climate change and human activities on the mean discharge changes. The results showed that the terraced and dammed watersheds exhibited significant decreases in annual runoff. All hydrologic metrics indicated that the highest degree of hydrologic alteration was in the Sandu River watershed (terraced), where the monthly and extreme flows reduced significantly. In contrast, the annual eco-deficit increased significantly, indicating the highest reduction in streamflow among the three watersheds. The regulation of dams and reservoirs in the Dali River watershed has altered the flow regime, and obvious decreases in the maximum flow and slight increases in the minimum flow and baseflow indices were observed. In the Hulu River watershed (afforested), the monthly flow and extreme flows decreased slightly and were categorized as low-degree alteration, indicating that the long-term delayed effects of afforestation on hydrological processes. The magnitude of the eco-flow metrics varied with the alteration of annual precipitation. Climate change contributed 67.47% to the runoff reduction in the Hulu River watershed, while human activities played predominant roles in reducing runoff in the Sandu and Dali River watersheds. The findings revealed distinct patterns and causes of streamflow regime alteration due to different conservation measures, emphasizing the need to optimize the spatial allocation of measures to control soil erosion and utilize water resources on the Loess Plateau.  相似文献   

5.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A method for estimation of mean baseflow residence time in watersheds from hydrograph runoff recession characteristics was developed. Runoff recession characteristics were computed for the period 1993–96 in the 2 km2 Winnisook watershed, Catskill Mountains, southeastern New York, and were used to derive mean values of subsurface hydraulic conductivity and the storage coefficient. These values were then used to estimate the mean baseflow residence time from an expression of the soil contact time, based on watershed soil and topographic characteristics. For comparison, mean baseflow residence times were calculated for the same period of time through the traditional convolution integral approach, which relates rainfall δ18O to δ18O values in streamflow. Our computed mean baseflow residence time was 9 months by both methods. These results indicate that baseflow residence time can be calculated accurately using recession analysis, and the method is less expensive than using environmental and/or artificial tracers. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

7.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
《水文科学杂志》2013,58(6):1165-1175
Abstract

Steep topography and land-use transformations in Himalayan watersheds have a major impact on hydrological characteristics and flow regimes, and greatly affect the perenniality and sustainability of water resources in the region. To identify the appropriate conservation measures in a watershed properly, and, in particular, to augment flow during lean periods, accurate estimation of streamflow is essential. Due to the complexity of rainfall—runoff relationships in hilly watersheds and non-availability of reliable data, process-based models have limited applicability. In this study, data-driven models, based upon the Multiple Adaptive Regression Splines (MARS) technique, were employed to predict streamflow (surface runoff, baseflow and total runoff) in three mid-Himalayan micro-watersheds. In addition, the effect of length of historical records on the performance of MARS models was critically evaluated. Though acceptable MARS models could be developed with a 2-year data set, their performance improved considerably with a 3-year data set. Various indicators of model performance, such as correlation coefficient, average deviation, average absolute deviation and modelling efficiency, showed significant improvement for simulation of surface runoff, baseflow and total flow. To further analyse the versatility and general applicability of the MARS approach, 2-year data sets were used to develop the model and test it on a third-year data set to assess its performance. The models simulated the surface runoff, baseflow and total flow reasonably well and can be reliably applied in ungauged small watersheds under identical agro-climatic settings.  相似文献   

10.
Monitoring the effects of acidic deposition on aquatic ecosystems in the Northeastern US has generally required regular measurements of stream buffering chemistry (i.e. acid‐neutralizing capacity (ANC) and calcium Ca2+), which can be expensive and time consuming. The goal of this paper was to develop a simple method for predicting baseflow buffering chemistry based on the hydrogeomorphic properties of ten nested watersheds in the Neversink River basin (2·0–176·0 km2), an acid‐sensitive basin in the Catskill Mountains, New York State. The tributaries and main reach watersheds have strongly contrasting mean baseflow ANC values and Ca2+ concentrations, despite rather homogeneous vegetation, bedrock geology, and soils. A stepwise regression was applied to relate 13 hydrogeomorphic properties to the mean baseflow ANC values and Ca2+ concentrations. The regression analysis showed that watersheds with lower ANC values had a higher mean ratio of ‘quickflow’ runoff to precipitation during 20 non‐snowmelt runoff events (referred to as mean runoff ratio). The mean runoff ratio could explain at least 80% of the variability in mean baseflow ANC values and Ca2+ concentrations among the ten watersheds. Greater mean runoff ratios also correlated with steeper slopes and greater drainage densities, thus allowing the prediction of baseflow ANC values (r2 = 0·75) and Ca2+ concentrations (r2 = 0·77) with widely available spatial data alone. These results indicate that hydrogeomorphic properties can predict a watershed's sensitivity to acid deposition in regions where the spatial sources of stream buffering chemistry from the bedrock mineralogy and soils are fairly uniform. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The paired watershed experimental (PWE) approach has long been used as an effective means to assess the impacts of forest change on hydrology in small watersheds (<100 km2). Yet, the effects of climate variability on streamflow are not often assessed in PWE design. In this study, two sets of paired watersheds, (1) Camp and Greata Creeks and (2) 240 and 241 Creeks located in the Southern Interior of British Columbia, Canada, were selected to explore relative roles of forest disturbance and climate variability on streamflow components (i.e., baseflow and surface runoff) at different time scales. Our analyses showed that forest disturbance is positively related to annual streamflow components. However, this relationship is statistically insignificant since forest disturbance can either increase or decrease seasonal streamflow components, which eventually limited the positive effect on streamflow at the annual scale. Interestingly, we found that forest disturbance consistently decreased summer streamflow components in the two PWEs as forest disturbance can augment earlier and quicker snow-melt processes and hence reduce soil moisture to maintain summer streamflow components. More importantly, this study revealed that climate variability played a more significant role than forest disturbance in both annual and seasonal streamflow components, for instance, climate variability can account for as much as 90% of summer streamflow components variation in Camp, suggesting the role of climate variability on streamflow should be highlighted in the traditional PWE approach to truly advance our understanding of the interactions of forest change, climate variability and water for sustainable water resource management.  相似文献   

12.
Pukemanga is a small (3 ha) steep headwater catchment at the Whatawhata Research Station near Hamilton, New Zealand. The water balance (1996–2002) shows average annual rainfall of 1640 mm producing annual runoff of 440 mm (baseflow 326 mm, stormflow 114 mm) and ‘deep seepage’ loss of 450 mm (i.e. 450 mm of water not appearing in the stream). Oxygen-18 (18O) concentrations were measured at weekly intervals for 8–15 months at six sites, ranging from Pukemanga Stream baseflow through wetland seepage to ephemeral streams and surface runoff. The first two showed no significant 18O variations. Inferred mean residence times within the catchment ranged from at least 4 years (for the stream baseflow and seepage) to a few weeks (for the ephemeral flows and surface runoff). Silica concentrations could also be used to distinguish deep flowpath water from near-surface flowpath water. Tritium concentrations gave an estimated mean residence time of 9 years for Pukemanga Stream baseflow. Sulphur hexafluoride tended to give younger ages, while the chlorofluorocarbon ages were older, but are not considered as reliable for dating streamflow in this time range. These results show that deep pathways predominate with over 74% of runoff deriving from deep hillslope flowpaths via the wetland, and 87% of total drainage (baseflow and deep seepage) travelling via deep hillslope flowpaths. Our conception of the deep drainage process is that there is a large volume of slowly moving water in the system (above and below the water table), which reaches the wetland and stream via an unconfined groundwater system. Subsurface water equivalents are estimated to be 2·9 m for drainage at the weir and 4·1 m for drainage bypassing the weir, giving a total of 7 m depth over the catchment. The unsaturated zone plays an important role in storing water for long periods (about 4 years), while linking the surface with the groundwater water table to contribute to the fast streamflow response to rainfall. A schematic model of the various pathways with indicative residence times is given. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
James M. Buttle 《水文研究》2016,30(24):4644-4653
The potential for dynamic storage to serve as a metric of basin behaviour was assessed using data from five drainage basins with headwaters on the thick sand and gravel deposits of the Oak Ridges Moraine in southern Ontario, Canada. Dynamic storage was directly correlated with the ratio of variability of δ2H in streamflow relative to that in precipitation. This ratio has previously been shown to be inversely related to basin mean transit time (MTT), suggesting an inverse relationship between dynamic storage and MTT for the study basins. Dynamic storage was also directly correlated with interannual variability in stream runoff, baseflow and baseflow:runoff ratio, implying that basins with smaller dynamic storage have less interannual variability in their streamflow regimes. These preliminary results suggest that dynamic storage may serve as a readily derived and useful metric of basin behaviour for inter‐basin comparisons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The time of concentration (Tc) is a fundamental parameter in the design of hydrological projects for watersheds. In this study a graphical methodology is described for estimating Tc in a watershed, and this is applied to 17 rainfall–runoff events from a rural watershed located near the capital city of Mato Grosso do Sul State, in the Brazilian Cerrado. The Tc values obtained through the graphical method were compared to Tc values estimated using 20 equations from various references. The equations were selected by considering those that were not developed using data for urban watersheds, and the results of the graphical method were compared to those derived by applying the equations to sub-basin data. The graphical method was reliable in determining Tc, and Ventura’s equation was found to present the best performance for a rural watershed in a tropical climate region.  相似文献   

16.
Abstract

Discharge in most rivers consists mainly of baseflow exfiltrating from shallow groundwater reservoirs, while surface or other direct flows cease soon after rain storms or snowmelt. Analysis of observed baseflow recessions of two rivers in Turkey with intermittent flows and different geographical and climatic characteristics yielded nonlinear storage–outflow relationships of the highly seasonal aquifers. Baseflow separation was carried out using a nonlinear reservoir algorithm. Baseflow seasonality is related to the hydro-climatic conditions influencing groundwater recharge and evapotranspiration of groundwater. As intermittent streams generally have zero flows in the dry season, calibration of recession parameters is in many cases a complicated task.

Citation Aksoy, H. & Wittenberg, H. (2011) Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrol. Sci. J. 56(2), 226–237.  相似文献   

17.
In this study, we characterize the snowmelt hydrological response of nine headwater watersheds in southeast Wyoming by separating streamflow into three components using a combination of tracer and graphical approaches. First, continuous 15-min records of specific conductance (SC) from 2016 to 2018 were used to separate streamflow into annual contributions, representing water that contributes to streamflow in a given year that entered the watershed in the same year being considered, and perennial contributions, representing water that contributes to streamflow in a given year that entered the watershed in previous years. Then, diurnal streamflow cycles occurring during the snowmelt season were used to graphically separate annual contributions into rapid diurnal snowmelt contributions, representing water with the relatively fastest hydrological response and shortest residence time, and delayed annual contributions, representing water with relatively longer residence time in the watershed before becoming streamflow. On average, mean annual total streamflow was comprised of between 22% and 46% perennial contributions, 7% and 14% rapid diurnal snowmelt contributions, and 46% and 55% delayed annual contributions across the watersheds. A hysteresis index describing SC-discharge patterns indicated that, annually, most watersheds showed negative, concave, anti-clockwise hysteretic direction suggesting faster flow pathways dominate streamflow on the rising limb of the annual hydrograph relative to the falling limb. At the daily timescale during snowmelt-induced diurnal streamflow cycles, hysteresis was negative, but with a clockwise direction, implying that rapid diurnal snowmelt contributions generated from the concurrent daily snowmelt, with lower SC, arrived after delayed annual contribution peaks and preferentially contributed on the falling limb of diurnal cycles. South-facing watersheds were more susceptible to early season snowmelt at slower rates, resulting in less annual and more perennial contributions. Conversely, north-facing watersheds had longer snow persistence and larger proportions of annual contributions and rapid diurnal snowmelt contributions. Watersheds with surficial geology dominated by glacial deposits had a lower proportion of rapid diurnal snowmelt contributions compared to watersheds with large percentages of bedrock surficial geology.  相似文献   

18.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Baseflow has become an important source of nitrate nonpoint source pollution in many intensive agricultural watersheds. Uncertainties in baseflow nutrient load separation are caused by the effects of hydrometeorological factors on both baseflow recession and baseflow nutrient load recession. These uncertainties have not been addressed well in the existing separating algorithms, which are based on simple baseflow rate–load relationships. In the present study, a recursive tracing source algorithm (RTSA) was developed based on a nonlinear reservoir algorithm and hydrometeorology-corrected baseflow nutrient load recession parameter. This approach was used to reduce the uncertainty of baseflow nitrate load estimation caused by variations in different load recessions under varying climate conditions. RTSA validation in a typical rainy agricultural watershed yielded Nash–Sutcliffe efficiency, root mean square error-observation standard deviation ratio, and R2 values of 0.91, 0.30, and 0.91, respectively. The baseflow nitrate–nitrogen (N─NO3) loads from 2003 to 2012 in the Changle River watershed of eastern China were estimated with the RTSA. The results indicated that baseflow nitrate export accounted for 62.0% of the mean total annual N─NO3 loads (18.0 kg/ha). The total baseflow N─NO3 export was highest in spring (3.6 kg/ha), followed by summer (3.2 kg/ha), winter (2.3 kg/ha), and autumn (2.1 kg/ha). The contribution of baseflow to total nitrate in the stream decreased in the order of winter (69.88%) >spring (66.59%) >autumn (60.36%) >summer (54.04%). The monthly baseflow N─NO3 loads and flow-weighted concentrations greatly increased during the research period (Mann–Kendall test, Zs > 2.56, p < .01). Without proper countermeasures, baseflow nitrate may represent a serious long-term risk for water surfaces in the future.  相似文献   

20.
Baseflows have declined for decades in the Lesser Himalaya but the causes are still debated. This paper compares variations in streamflow response over three years for two similar headwater catchments in northwest India with largely undisturbed (Arnigad) and highly degraded (Bansigad) oak forest. Hydrograph analysis suggested no catchment leakage, thereby allowing meaningful comparisons. The mean annual runoff coefficient for Arnigad was 54% (range 44–61%) against 62% (53–69%) at Bansigad. Despite greater total runoff Qt (by 250 mm year1), baseflow at Bansigad ceased by March, but was perennial at Arnigad (making up 90% of Qt vs. 51% at Bansigad). Arnigad storm flows, Qs, were modest (8–11% of Qt) and occurred mostly during monsoons (78–98%), while Qs at Bansigad was 49% of Qt and occurred also during post-monsoon seasons. Our results underscore the importance of maintaining soil water retention capacity after forest removal to maintain baseflow levels.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR D. Gerten  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号