首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two K-Band low-noise amplifiers (LNAs) are designed and implemented in a standard 0.18 /spl mu/m CMOS technology. The 24 GHz LNA has demonstrated a 12.86 dB gain and a 5.6 dB noise figure (NF) at 23.5 GHz. The 26 GHz LNA achieves an 8.9 dB gain at the peak gain frequency of 25.7 GHz and a 6.93 dB NF at 25 GHz. The input referred third-order intercept point (IIP3) is >+2 dBm for both LNAs with a current consumption of 30 mA from a 1.8 V power supply. To our knowledge, the LNAs show the highest operation frequencies ever reported for LNAs in a standard CMOS process.  相似文献   

2.
This paper presents a dual mode CMOS low noise amplifier (LNA) suitable for Worldwide Interoperability for Microwave Access applications, at 2.4?GHz. The design concept is based on body biasing. An off chip Digital to Analog Converter is used to generate the proper body bias voltage to control the LNA gain and linearity. Measurement results show that in the high gain mode, for V BS?=?0.3?V, the cascode LNA, implemented in a 0.13???m CMOS standard process, exhibits a 14?dB power gain, a 3.6?dB noise figure (NF) and ?4.6?dBm of third order intercept point (IIP3) for a 4?mA current consumption under 1?V supply. Tuning V BS to ?0.55?V, switches the LNA into the low gain mode. It achieves 8.6?dB power gain, 6.2?dB NF and 6?dBm IIP3 under a constrained power consumption of 1.7?mW.  相似文献   

3.
We propose a highly linear low-noise amplifier (LNA) using the double derivative superposition method with a tuned inductor. This topology has an auxiliary common gate stage of the cascode amplifier to cancel each third-order intermodulation distortion (IMD3) component and can provide a high third-order input intercept point (IIP3) for the 5.25 GHz frequency band. From the simulation results using the TSMC 0.18 μm RF CMOS process, the IIP3 in the proposed cascode LNAs can be improved by 9 dB, compared with the conventional derivative superposition method. The proposed LNA achieves an IIP3 of + 15 dBm with a gain of 10.5 dB, a noise figure of 2.4 dB, and a power consumption of 6 mA at 1.5 V.  相似文献   

4.
In some applications such as short-range radars, a large target can desensitize the receiver. A high dynamic range low-noise amplifier (LNA), as a key component of a transmitter/receiver module, can improve the entire system performance. This study presents a high dynamic range differential LNA that uses a differential quartet topology for the first time. The LNA shows more linearity than the conventional differential common source LNAs. For a typical 0.18 µm CMOS technology, it achieves a power gain of about 5.5 dB at 24 GHz, a low noise figure (NF) of 3.5 dB, very good linearity performance, an input-referred third-order intercept point (IIP3) of +?6.3 dBm, and an input-referred 1 dB compression point (P1dB) of ??4.5 dBm.  相似文献   

5.
A 2.7-V 900-MHz CMOS LNA and mixer   总被引:4,自引:0,他引:4  
A CMOS low-noise amplifier (LNA) and a mixer for RF front-end applications are described. A current reuse technique is described that increases amplifier transconductance for the LNA and mixer without increasing power dissipation, compared to standard topologies. At 900 MHz, the LNA minimum noise figure (NF) is 1.9 dB, input third-order intercept point (IIP3) is -3.2 dBm and forward gain is 15.6 dB. With a 1-GHz local oscillator (LO) and a 900-MHz RF input, the mixer minimum double sideband noise figure (DSB NF) is 5.8 dB, IIP3 is -4.1 dBm, and power conversion gain is 8.8 dB. The LNA and mixer, respectively, consume 20 mW and 7 mW from a 2.7 V power supply. The active areas of the LNA and mixer are 0.7 mm×0.4 mm and 0.7 mm×0.2 mm, respectively. The prototypes were fabricated in a 0.5-μm CMOS process  相似文献   

6.
This paper describes a fully integrated zero-IF receiver for cellular CDMA and GPS applications. The single-chip zero-IF receiver integrates the entire signal path for CDMA and GPS bands, including a low-noise amplifier (LNA), I/Q down-converters, baseband channel selection filters (CSFs), a voltage-controlled oscillator (VCO), and a local oscillator (LO) distribution circuit for each band. The cellular-band LNA achieves a noise figure (NF) of 1.2 dB, input third-order intercept point (IIP3) of 11 dBm, and gain of 15.5 dB. Cellular I/Q down-converter and baseband circuitries show 9-dB composite NF, 9 dBm IIP3 and 60-dBm input second-order intercept point (IIP2) without IIP2 calibration. The measured LO leakage is less than -110 dBm at LNA input. The phase noise of the cellular VCO is -134 dBc/Hz at 900-kHz offset with 1.76-GHz carrier frequency. Total GPS signal path achieves NF of 1.7 dB and gain of 74 dB with 42-mA current. The receiver is fabricated in a 0.35-mum SiGe BiCMOS process and packaged in a 6 mm times 6 mm 40-pin micro-lead-frame. Handset measurements report that the receiver meets or exceeds all of the CDMA-2000 requirements  相似文献   

7.
This paper focuses on the design and measurements of low-noise amplifiers (LNA) targeted for WCDMA base-station applications. In addition, various gain control techniques and the accuracy in noise measurements have been analyzed. Two different LNA designs are presented. Both LNAs can be operated in two gain modes, which are optimized for different base-station configurations. Both designs are implemented using the same 0.25-μm SiGe BiCMOS process, and both designs achieve the NF of 1 dB and IIP3 of ?5 dBm in high gain mode.  相似文献   

8.
A highly integrated direct conversion receiver for cellular code division multiple access (CDMA) and GPS applications is successfully developed using a 0.5-/spl mu/m SiGe BiCMOS technology. The receiver consists of two low-noise amplifiers (LNAs), a dual-band mixer, two voltage-controlled oscillators (VCOs), a local-oscillator signal generation block, and channel filters. The CDMA LNA achieves a noise figure of 1.3 dB, an input-referred third-order intercept point (IIP3) of 10.9 dBm, and a gain of 15.3 dB with a current consumption of 9.8 mA in the high-gain mode. The mixer for the CDMA mode achieves an uncalibrated input-referred second-order intercept point of 53.7 dBm, an IIP3 of 6.4 dBm, a noise figure of 7.2 dB and a voltage gain of 37.2 dB. The phase noise of the CDMA VCO is approximately -133 dBc/Hz at a 900-kHz offset from a 1.762-GHz operating frequency. It exceeds all the CDMA requirements when tested on a handset.  相似文献   

9.
A D‐band subharmonically‐pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a 180° power divider structure consisting of a Lange coupler followed by a λ/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs‐based metamorphic high electron mobility transistor process with 100‐nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4‐dBm LO drive and an intermediate frequency of 100 MHz. The input 1‐dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.  相似文献   

10.
This paper focuses on the design of a 2.3–21 GHz Distributed Low Noise Amplifier (LNA) with low noise figure (NF), high gain (S21), and high linearity (IIP3) for broadband applications. This distributed amplifier (DA) includes S/C/X/Ku/K-band, which makes it very suitable for heterodyne receivers. The proposed DA uses a 0.18 μm GaAs pHEMT process (OMMIC ED02AH) in cascade architecture with lines adaptation and equalization of phase velocity techniques, to absorb their parasitic capacitances into the gate and drain transmission lines in order to achieve wide bandwidth and to enhance gain and linearity. The proposed broadband DA achieved an excellent gain in the flatness of 13.5 ± 0.2 dB, a low noise figure of 3.44 ± 1.12 dB, and a small group delay variation of ±19.721 ps over the range of 2.3–21 GHz. The input and output reflection coefficients S11 and S22 are less than −10 dB. The input compression point (P1dB) and input third-order intercept point (IIP3) are −1.5 dBm and 11.5 dBm, respectively at 13 GHz. The dissipated power is 282 mW and the core layout size is 2.2 × 0.8 mm2.  相似文献   

11.
介绍了一个零中频接收机CMOS射频前端,适用于双带(900MHz/1800 MHz)GSM/EDGE;E系统.射频前端由两个独立的低噪声放大器和正交混频器组成,并且为了降低闪烁噪声采用了电流模式无源混频器.该电路采用0.13 μm CMOS工艺流片,芯片面积为0.9 mm×1.0 mm.芯片测试结果表明:射频前端在90...  相似文献   

12.
A wideband CMOS low noise amplifier (LNA) with single-ended input and output employing noise and IM2 distortion cancellation for a digital terrestrial and cable TV tuner is presented. By adopting a noise canceling structure combining a common source amplifier and a common gate amplifier by current amplification, the LNA obtains a low noise figure and high IIP3. IIP2 as well as IIP3 of the LNA is important in broadband systems, especially digital terrestrial and cable TV applications. Accordingly, in order to overcome the poor IIP2 performance of conventional LNAs with single-ended input and output and avoid the use of external and bulky passive transformers along with high sensitivity, an IM2 distortion cancellation technique exploiting the complementary RF performance of NMOS and PMOS while retaining thermal noise canceling is adopted in the LNA. The proposed LNA is implemented in a 0.18 $muhbox{m}$ CMOS process and achieves a power gain of 14 dB, an average noise figure of 3 dB, an IIP3 of 3 dBm, an IIP2 of 44 dBm at maximum gain, and S11 of under ${- 9}~{rm dB}$ in a frequency range from 50 MHz to 880 MHz. The power consumption is 34.8 mW at 2.2 V and the chip area is 0.16 ${rm mm}^{2}$.   相似文献   

13.
We design a highly linear CMOS RF receiver front-end operating in the 5 GHz band using the modified derivative superposition (DS) method with one- or two-tuned inductors in the low noise amplifier (LNA) and mixer. This method can be used to adjust the magnitude and phase of the third-order currents at output, and thus ensure that they cancel each other out. We characterize the two front-ends by the third-order input intercept point (IIP3), voltage conversion gain, and a noise figure based on the TSMC 0.18 μm RF CMOS process. Our simulation results suggest that the front-end with one-tuned inductor in the mixer supports linearization with the DS method, which only sacrifices 1.9 dB of IIP3 while the other performance parameters are improved. Furthermore, the front-end with two-tuned inductors requires a precise optimum design point, because it has to adjust two inductances simultaneously for optimization. If the inductances have deviated from the optimum design point, the front-end with two-tuned inductors has worse IIP3 characteristic than the front-end with one-tuned inductor. With two-tuned inductors, the front-end has an IIP3 of 5.3 dBm with a noise figure (NF) of 4.7 dB and a voltage conversion gain of 23.1 dB. The front-end with one-tuned inductor has an IIP3 of 3.4 dBm with an NF of 4.4 dB and a voltage conversion gain of 24.5 dB. There is a power consumption of 9.2 mA from a 1.5 V supply.  相似文献   

14.
A 0.5–2.5 GHz ultra low power differential resistive feedback common gate low noise amplifier (RFCGLNA) without the use of inductor is presented. The proposed RFCGLNA adopts the NMOS and PMOS complementary topology to reduce the power consumption by half. Based on common-gate topology, the proposed RFCGLNA employs capacitive cross-coupling (CCC) and resistive feedback techniques. The CCC technique can further reduce the power consumption by half. The resistive feedback technique can constrain the common mode voltages of the proposed RFCGLNA and meanwhile, improve the third-order input intercept point (IIP3). The DC path is supplied by the current source transistor which forms a positive feedback loop to improve the gain at low frequency. Implemented with 65 nm standard complementary metal oxide semiconductor (CMOS) technology, the measured performance achieves 15 dB gain with S11 < ?10 dB in the 0.5–2.5 GHz band. The noise figure (NF) is 3.9–5.0 dB and the IIP3 is 3.1–3.6 dBm. The power consumption is only 910 uW.  相似文献   

15.
设计实现了一种采用开关跨导型结构的低噪声高线性度上变频混频器,详细分析了电路的噪声特性和线性度等性能参数,本振频率为900 MHz。芯片采用0.18μm Mixed signal CMOS工艺实现。测试结果表明,混频器的转换增益约为8 dB,单边带噪声系数约为11 dB,输入参考三阶交调点(IIP3)约为10.5 dBm。芯片工作在1.8 V电源电压下,消耗的电流为10 mA,芯片总面积为0.63 mm×0.78 mm。  相似文献   

16.
A wideband CMOS variable gain low noise amplifier(VGLNA) based on a single-to-differential(S2D) stage and resistive attenuator is presented for TV tuner applications.Detailed analysis of input matching,noise figure(NF) and linearity for S2D is given.A highly linear passive resistive attenuator is proposed to provide 6 dB attenuation and input matching for each gain stage.The chip was fabricated by a 0.18μm 1P6M CMOS process, and the measurements show that the VGLNA covers a gain range over 36.4 dB and achieves a maximum gain of 21.3 dB,a minimum NF of 3.0 dB,an IIP3 of 0.9 dBm and an IIP2 of 26.3 dBm at high gain mode with a power consumption less than 10 mA from a 1.8 V supply.  相似文献   

17.
A fully differential complementary metal oxide semiconductor (CMOS) low noise amplifier (LNA) for 3.1-10.6 GHz ultra-wideband (UWB) communication systems is presented. The LNA adopts capacitive cross-coupling common-gate (CG) topology to achieve wideband input matching and low noise figure (NF). Inductive series-peaking is used for the LNA to obtain broadband flat gain in the whole 3.1-10.6 GHz band. Designed in 0.18 um CMOS technology, the LNA achieves an NF of 3.1-4.7 dB, an Sll of less than -10 dB, an S21 of 10.3 dB with ±0.4 dB fluctuation, and an input 3rd interception point (IIP3) of -5.1 dBm, while the current consumption is only 4.8 mA from a 1.8 V power supply. The chip area of the LNA is 1×0.94 mm^2.  相似文献   

18.
A RF mixer with both low noise and high linearity is designed,operating at 2.45-GHz ISM band for RFID application.The designed mixer uses an optimal input matching network and the carefully chosen sizes of transistors,also with the appropriate bias point,to improve the noise figure(NF).Also,with a resonant LC loop as the current source and a parallel PMOS-resistor as the load,the mixer has a high linearity.The post simulation results show that the single side- band noise figure of 8.57 dB,conversion gain of 10.02 dB,input 1-dB compression point(P-1dB)of-8.33 dBm,and input third-order intercept point(IIP3)of 5.35 dBm.  相似文献   

19.
In this paper, a new CMOS wideband low noise amplifier (LNA) is proposed that is operated within a range of 470 MHz-3 GHz with current reuse, mirror bias and a source inductive degeneration technique. A two-stage topology is adopted to implement the LNA based on the TSMC 0.18-μm RF CMOS process. Traditional wideband LNAs suffer from a fundamental trade-off in noise figure (NF), gain and source impedance matching. Therefore, we propose a new LNA which obtains good NF and gain flatness performance by integrating two kinds of wideband matching techniques and a two-stage topology. The new LNA can also achieve a tunable gain at different power consumption conditions. The measurement results at the maximum power consumption mode show that the gain is between 11.3 and 13.6 dB, the NF is less than 2.5 dB, and the third-order intercept point (IIP3) is about −3.5 dBm. The LNA consumes maximum power at about 27 mW with a 1.8 V power supply. The core area is 0.55×0.95 mm2.  相似文献   

20.
A Q‐band pHEMT image‐rejection low‐noise amplifier (IR‐LNA) is presented using inter‐stage tunable resonators. The inter‐stage L‐C resonators can maximize an image rejection by functioning as inter‐stage matching circuits at an operating frequency (FOP) and short circuits at an image frequency (FIM). In addition, it also brings more wideband image rejection than conventional notch filters. Moreover, tunable varactors in L‐C resonators not only compensate for the mismatch of an image frequency induced by the process variation or model error but can also change the image frequency according to a required RF frequency. The implemented pHEMT IR‐LNA shows 54.3 dB maximum image rejection ratio (IRR). By changing the varactor bias, the image frequency shifts from 27 GHz to 37 GHz with over 40 dB IRR, a 19.1 dB to 17.6 dB peak gain, and 3.2 dB to 4.3 dB noise figure. To the best of the authors' knowledge, it shows the highest IRR and FIM/FOP of the reported millimeter/quasi‐millimeter wave IR‐LNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号