首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a delay‐locked‐loop–based clock and data recovery (CDR) circuit design with a nB(n+2)B data formatting scheme for a high‐speed serial display interface. The nB(n+2)B data is formatted by inserting a ‘01’ clock information pattern in every piece of N‐bit data. The proposed CDR recovers clock and data in 1:10 demultiplexed form without an external reference clock. To validate the feasibility of the scheme, a 1.7‐Gbps CDR based on the proposed scheme is designed, simulated, and fabricated. Input data patterns were formatted as 10B12B for a high‐performance display interface. The proposed CDR consumes approximately 8 mA under a 3.3‐V power supply using a 0.35‐μm CMOS process and the measured peak‐to‐peak jitter of the recovered clock is 44 ps.  相似文献   

2.
A novel linear switched termination active cross‐coupled low‐voltage differential signaling (LVDS) transceiver operating at 1.5 GHz clock frequency is presented. On the transmitter side, an active cross‐coupled linear output driver and a switched termination scheme are applied to achieve high speed with low current. On the receiver side, a shared preamplifier scheme is employed to reduce power consumption. The proposed LVDS transceiver implemented in an 80 nm CMOS process is successfully demonstrated to provide a data rate of 6 Gbps/pin, an output data window of 147 ps peak‐to‐peak, and a data swing of 196 mV. The power consumption is measured to be 4.2 mW/pin at 1.2 V.  相似文献   

3.
文中介绍了一种2.5Gbps同步数字传输/光纤网络(SDH/SONET)芯片组。发送器由MAX3890(合路器、时钟发生器)和MAX3867(激光驱动器)组成,总随机抖动仅为3.4psRMS,MAX3890可提供2.5Gbps时钟给MAX3867的输入锁定,用于数据信号的再定时,使MAX3867成为仅有的系统性抖动源,典型的系统性抖动≤50psRMS。接收器由MAX3866(TIA)、MAX3875(时种及数据恢复)和MAX3885(分路器)组成,总随机抖动仅4.6psRMS系统性抖动约为20psRMS。该芯片组对于ITU/Bellcore关于2.5Gbps SDH/SONET抖动规范有显著的设计裕量。  相似文献   

4.
面向高速光通信系统的应用,提出了一种全速率线性25Gb/s时钟数据恢复电路(Clock and Data Recovery Circuit,CDRC)。CDRC采用了混频器型线性鉴相器和自动锁频技术来实现全速率时钟提取和数据恢复。在设计中没有使用外部参考时钟。基于45nm CMOS工艺,该CDR电路从版图后仿真结果得到:恢复25Gb/s数据眼图的差分电压峰峰值Vpp和抖动峰峰值分别为1.3V和2.93ps;输出25GHz时钟的差分电压峰峰值Vpp和抖动峰峰值分别为1V和2.51ps,相位噪声为-93.6dBc/Hz@1MHz。该芯片面积为1.18×1.07mm2,在1V的电源电压下功耗为51.36mW。  相似文献   

5.
We report an experimental demonstration of 40 Gbps all‐optical 3R regeneration with all‐optical clock recovery based on InP semiconductor devices. We also obtain all optical non‐return‐to‐zero to return‐to‐zero (NRZ‐to‐RZ) format conversion using the recovered clock signal at 10 Gbps and 40 Gbps. It leads to a good performance using a Mach‐Zehnder interferometric wavelength converter and a self‐pulsating laser diode (LD). The self‐pulsating LD serves a recovered clock, which has an rms timing jitter as low as sub‐picosecond. In the case of 3R regeneration of RZ data, we achieve a 1.0 dB power penalty at 10?9 BER after demultiplexing 40 Gbps to 10 Gbps with an eletro‐absorption modulator. The regenerated 3R data shows stable error‐free operation with no BER floor for all channels. The combination of these functional devices provides all‐optical 3R regeneration with NRZ‐to‐RZ conversion.  相似文献   

6.
This paper proposes an open‐loop clock recovery circuit (CRC) using two high‐Q dielectric resonator (DR) filters for 39.8 Gb/s and 42.8 Gb/s dual‐mode operation. The DR filters are fabricated to obtain high Q‐values of approximately 950 at the 40 GHz band and to suppress spurious resonant modes up to 45 GHz. The CRC is implemented in a compact module by integrating the DR filters with other circuits in the CRC. The peak‐to‐peak and RMS jitter values of the clock signals recovered from 39.8 Gb/s and 42.8 Gb/s pseudo‐random binary sequence (PRBS) data with a word length of 231?1 are less than 2.0 ps and 0.3 ps, respectively. The peak‐to‐peak amplitudes of the recovered clocks are quite stable and within the range of 2.5 V to 2.7 V, even when the input data signals vary from 150 mV to 500 mV. Error‐free operation of the 40 Gb/s‐class optical receiver with the dual‐mode CRC is confirmed at both 39.8 Gb/s and 42.8 Gb/s data rates.  相似文献   

7.
A 200-Mbps/spl sim/2-Gbps continuous-rate clock-and-data-recovery (CDR) circuit using half-rate clocking is presented. To detect the data with wide-range bit rates, a frequency tracing circuit (FTC) is used to aid the frequency acquisition. A wide-range and low gain voltage-controlled oscillator (VCO) is also presented by using analog and digital controlled mechanisms. A two-level bang-bang phase detector is utilized to improve the jitter performance and speed up the locking process. This CDR circuit has been realized in a 2P4M 0.35-/spl mu/m CMOS process. The experimental results show that this CDR circuit with the proposed FTC can receive 2/sup 31/-1 pseudorandom bit stream when the bit rate ranges from 200 Mbps to 2 Gbps without the harmonic-locking issue. All measured bit error rates are below 10/sup -12/. The measured root-mean-square and peak-to-peak jitters are 5.86 ps and 41.8 ps, respectively, at 2 Gbps.  相似文献   

8.
A fully-integrated 5 Gb/s PLL-based clock and data recovery circuit based on a linear half-rate phase detector (PD) architecture is presented. Data retiming performed by the linear PD provides practically no systematic offset for the operating frequency of interest. The circuit was designed in a 0.18 μm CMOS process and occupies an active area of 0.2 × 0.32 mm2. The CDR exhibits an RMS jitter of ± 1.2 ps and a peak-to-peak jitter of 5 ps. The power dissipation is 97 mW from a 1.8 V supply.  相似文献   

9.
对1.25Gbps应用于千兆以太网的低抖动串并并串转换接收器进行了设计,应用了带有频率辅助的双环时钟数据恢复电路,FLL扩大了时钟数据恢复电路的捕捉范围。基于三态结构的鉴频鉴相从1.25Gbps非归零数据流中提取时钟信息,驱动一个三级的电流注入环形振荡器产生1.25GHz的低抖动时钟。从低抖动考虑引入了均衡器。该串并并串转换接收器采用TSMC0.35μm2P3M3.3V/5V混合信号CMOS技术工艺。测试结果表明了输出并行数据有较好的低抖动性能:1σ随机抖动(RJ)为7.3ps,全部抖动(TJ)为58mUI。  相似文献   

10.
利用法国OMM IC公司的0.2μm G aA s PHEM T工艺,设计实现了10 G b/s NRZ码时钟信息提取电路。该电路采用改进型双平衡G ilbert单元的结构,引进了容性源极耦合差动电流放大器和调谐负载电路,大大提高了电路的性能。测试表明:在输入速率为9.953 28 G b/s长度为223-1伪随机序列的情况下,提取出的时钟的均方根抖动是1.18 ps,峰峰值抖动是8.44 ps。芯片面积为0.5 mm×1 mm,采用-5 V电源供电,功耗约为100 mW。  相似文献   

11.
A jitter-tolerance-enhanced 10 Gb/s clock and data recovery (CDR) circuit is presented. The proposed architecture cascades 2 half-rate CDRs with different loop bandwidth to relax the design bottleneck and the predicted jitter tolerance can be enhanced without sacrificing the jitter transfer. By using a gated digital-controlled oscillator (GDCO), the proposed GDCO-based phase detector may reduce the cost of this architecture and achieve a wide linear range. This CDR circuit has been fabricated in a 0.13 mum CMOS technology and consumes 60 mW from a 1.5 V supply. It occupies an active area of 0.36 mm2. The measured rms jitter is 0.96 ps and the peak-to-peak jitter is 7.11 ps for a 10 Gb/s 27-1 PRBS. The measured bit error rate for a 10 Gb/s 27-1PRBS is less than 10-12.  相似文献   

12.
针对高速(Gbit/s)串行数据通信应用,提出了一种混合结构的高速时钟数据恢复电路。该电路结构结合鉴频器和半速率二进制鉴相器,实现了频率锁定环路和相位恢复环路的同时工作。和传统的双环路结构相比,在功耗和面积可比拟的前提下,该结构系统的复杂度低、响应速度快。电路采用1.8 V,0.18μm CMOS工艺流片验证,测试结果显示在2 Gbit/s伪随机数序列输入情况下,电路能正确恢复出时钟和数据。芯片面积约0.5 mm~2,时钟数据恢复部分功耗为53.6 mW,输出驱动电路功耗约64.5 mW,恢复出的时钟抖动峰峰值为45 ps,均方根抖动为9.636 ps。  相似文献   

13.
Circuit emulation service (CES) allows time‐division multiplexing (TDM) services (T1/E1 and T3/E3 circuits) to be transparently extended across a packet network. With circuit emulation over IP, for instance, TDM data received from an external device at the edge of an IP network is converted to IP packets, sent through the IP network, passed out of the IP network to its destination, and reassembled into TDM bit stream. Clock synchronization is very important for CES. This paper presents a clock synchronization scheme based on a double exponential filtering technique and a linear process model. The linear process model is used to describe the behaviour of clock synchronization errors between a transmitter and a receiver. In the clock synchronization scheme, the transmitter periodically sends explicit time indications or timestamps to a receiver to enable the receiver to synchronize its local clock to the transmitter's clock. A phase‐locked loop (PLL) at the receiver processes the transmitted timestamps to generate timing signal for the receiver. The PLL has a simple implementation and provides both fast responsiveness (i.e. fast acquisition of transmitter frequency at a receiver) and significant jitter reduction in the locked state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A 10-Gb/s phase-locked clock and data recovery circuit incorporates a multiphase LC oscillator and a half-rate phase/frequency detector with automatic data retiming. Fabricated in 0.18-/spl mu/m CMOS technology in an area of 1.75/spl times/1.55 mm/sup 2/, the circuit exhibits a capture range of 1.43 GHz, an rms jitter of 0.8 ps, a peak-to-peak jitter of 9.9 ps, and a bit error rate of 10/sup -9/ with a pseudorandom bit sequence of 2/sup 23/-1. The power dissipation excluding the output buffers is 91 mW from a 1.8-V supply.  相似文献   

15.
Three circuit techniques for a 1.5 V, 512 Mb graphic DDR4 (GDDR4) SDRAM using a 90-nm DRAM process have been developed. First, a dual-clock system increases clocking accuracy and expands internal timing margins for harmonious core operation regardless of external clock frequency. Second, a four-phase data input strobe scheme helps to increase the input data valid window. Third, a fully analog delay-locked loop which provides a stable I/O clock and has 31.67 ps peak-to-peak jitter characteristics is designed. On the basis of these circuit techniques, the data rate is 3.2 Gbps/pin, which corresponds to 12.8 Gbps in times32 GDDR4-based I/O. Also, a multidivided architecture consisting of four independent 128 Mb core arrays is designed to reduce power line and output noise.  相似文献   

16.
高性能数字时钟数据恢复电路   总被引:2,自引:1,他引:1  
设计了一个数字时钟数据恢复电路,采用相位选择锁相环进行相位调整,在不影响系统噪声性能的前提下大大降低了芯片面积。该电路应用于100 MHz以太网收发系统中,采用中芯国际0.18μm标准CMOS工艺实现,核心电路相位选择锁相环的芯片面积小于0.12 mm2,电流消耗低于4 mA。仿真与测试结果表明,恢复时钟抖动的峰峰值小于350 ps,相位偏差小于400 ps,以太网接收误码率小于10-12,电路可以满足接收系统的要求。  相似文献   

17.
A fully integrated clock and data recovery circuit (CDR) using a multiplying shifted-averaging delay locked loop and a rate-detection circuit is presented. It can achieve wide range and low jitter operation. A duty-cycle-insensitive phase detector is also proposed to mitigate the dependency on clock duty cycle variations. The experimental prototype has been fabricated in a 0.25-/spl mu/m 1P5M CMOS technology and occupies an active area of 2.89 mm/sup 2/. The measured CDR could operate from 125 Mb/s to 2.0 Gb/s with a bit error rate better than 10/sup -12/ from a 2.5-V supply. Over the entire operating frequency range, the maximum rms jitter of the recovered clock is less than 4 ps.  相似文献   

18.
A 10-Gb/s phase-locked clock and data recovery circuit incorporates an interpolating voltage-controlled oscillator and a half-rate phase detector. The phase detector provides a linear characteristic while retiming and demultiplexing the data with no systematic phase offset. Fabricated in a 0.18-μm CMOS technology in an area of 1.1×0.9 mm2, the circuit exhibits an RMS jitter of 1 ps, a peak-to-peak jitter of 14.5 ps in the recovered clock, and a bit-error rate of 1.28×10-6, with random data input of length 223-1. The power dissipation is 72 mW from a 2.5-V supply  相似文献   

19.
A monolithic clock and data recovery PLL circuit is implemented in a digital silicon bipolar technology without modification. The only external component used is the loop filter capacitor. A self-aligned data recovery architecture combined with a novel phase-detector design eliminates the need for nonlinear processing and phase shifter stages. This enables a simpler design with low power and reduced dependence on the bit rate. At 2.3 Gb/s, the test chip consumes 100 mW from a -3.6-V supply, excluding the input and output buffers. The worst-case rms jitter of the recovered clock is less than 14 ps with 223-1 pseudorandom bit sequence  相似文献   

20.
A semi-digital clock and data recovery(CDR) is presented.In order to lower CDR trace jitter and decrease loop latency,an average-based phase detection algorithm is adopted and realized with a novel circuit. Implemented in a 0.13μm standard 1P8M CMOS process,our CDR is integrated into a high speed serial and de-serial(SERDES) chip.Measurement results of the chip show that the CDR can trace the phase of the input data well and the RMS jitter of the recovery clock in the observation pin is 122 ps at 75 MHz clock frequency,while the bit error rate of the recovery data is less than 10×10-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号