首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using stereo images with ephemeris data from the Korea Multi‐Purpose Satellite‐1 electro‐optical camera (KOMPSAT‐1 EOC), we performed geometric modeling for three‐dimensional (3‐D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3‐D positioning using the KOMPSAT‐1 EOC stereo images. The results show that the positioning accuracy was about 12‐17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3‐D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.  相似文献   

2.
Since its launching on 21 December 1999, the Korea Multi‐Purpose Satellite‐I (KOMPSAT‐I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground‐based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft from injection orbit into the nominal on‐orbit. We include the ground‐based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.  相似文献   

3.
In this paper, we present design features, implementation, and validation of a satellite simulator subsystem for the Korea Multi‐Purpose Satellite‐2 (KOMPSAT‐2). The satellite simulator subsystem is implemented on a personal computer to minimize costs and trouble on embedding onboard flight software into the simulator. An object‐oriented design methodology is employed to maximize software reusability. Also, instead of a high‐cost commercial database, XML is used for the manipulation of spacecraft characteristics data, telecommand, telemetry, and simulation data. The KOMPSAT‐2 satellite simulator subsystem is validated by various simulations for autonomous onboard launch and early orbit phase operations, anomaly operation, and science fine mode operation. It is also officially verified by successfully passing various tests such as the satellite simulator subsystem test, mission control element system integration test, interface test, site installation test, and acceptance test.  相似文献   

4.
The use of stereoscopic SAR images offers an alternative to interferometric SAR for the generation of digital elevation models (DEMs). The stereo radargrammetric method is robust and can generate DEMs of sufficient accuracy to geocode SAR images. Previous work has shown that ground coordinates with accuracy of four times the resolution cell can be obtained from ERS data without using any ground control points (GCPs), where the high accuracy of the orbit and satellite position of the order of metres introduce insignificant errors into the intersection procedure. The orbit data for RADARSAT is not as accurate as that for ERS, and the perpendicular relationship between the resultant velocity vector and the resultant range vector is uncertain in terms of image geometry. Hence, it is necessary to refine the method to allow for possible errors. This paper introduces a weighted space intersection algorithm based on an analysis of the predicted errors. A radargrammetric error model for observation errors is also formulated to predict the accuracy of the algorithm. The revised method can be used without any GCPs, but this can lead to systematic errors due to less accurate orbit data, and it has been found that the use of two GCPs provides a reasonable solution. The method is insensitive to the spatial distribution of GCPs, which is often critical in traditional methods. The error statistics of the results generated from 32 independent check points, distributed through the entire SAR image, approach the predicted errors and give positional accuracy of 38 m in three dimensions  相似文献   

5.
HJ-1-C 是我国环境与灾害监测小卫星2+1星座中的一颗合成孔径雷达(SAR)卫星,工作于S 波段,具有5 m 分辨率。SAR 载荷采用网状反射面天线和大功率放大器方案,具有重量轻、效率高的特点,适合于小卫星平台。目前HJ-1-C 卫星已在轨运行,获得我国首批S 波段星载SAR 图像,图像质量高,地物信息丰富,表明SAR 载荷的设计合理,试验和测试充分。HJ-1-C 卫星将为我国减灾和环境应用发展做出贡献。该文将对HJ-1-C卫星SAR 载荷的设计和研制进行全面介绍,包括其主要功能和技术指标,各部分的设计,以及研制、测试和试验工程,最后给出其在轨获得的图像。   相似文献   

6.
李宁  牛世林 《雷达学报》2020,9(1):174-184
合成孔径雷达(SAR)图像水域分割在水资源调查、灾害监测等领域具有重要意义。针对中低分辨率星载SAR图像水域提取精度不足的难题,该文融合基于轻量级残差卷积神经网络(CNN)的图像超分辨率重建技术和传统SAR图像水域分割技术的优点,提出了一种基于局部超分辨重建的SAR图像水域分割方法,显著提升了SAR图像水域分割的精度。为了验证上述方法的有效性,该文以南水北调中线工程水源地丹江口水库为应用对象,基于国产高分三号(GF-3)卫星的8 m分辨率标准条带(SS)模式图像和欧空局Sentinel-1卫星20 m分辨率干涉宽幅(IW)模式图像,开展了水域分割的实验验证和精度评估工作。实验结果表明,该文所提方法可在中低分辨率SAR图像中获取更精确的水域分割结果,其水域分割性能较传统方法有大幅提升。   相似文献   

7.
于欢欢  沈鸣  高鹏骐  孙明国  郭效忠  赵有 《红外与激光工程》2017,46(1):117002-0117002(7)
利用内符合精度和外符合精度两种精度判定方法,对国内首台基于APOSOS亚太地基光学空间物体观测系统)项目安装在国外的15 cm地基空间碎片光电观测望远镜获得的观测数据进行了观测精度计算分析。经过计算分析,得到内符合精度在5左右;利用全球激光测距服务系统提供的综合激光测距数据格式标准点资料对Lageos1、Lageos2和Ajisai卫星进行精密定轨,进而获得这些卫星的精密轨道,并以此精密轨道作为APOSOS 15 cm光电望远镜观测数据外符合精度的评定依据,得到外符合精度大约在6左右。计算分析结果表明:系统的观测精度较高,达到了设计指标,能够满足科研和工程应用的需要。  相似文献   

8.
The Mission Analysis and Planning System (MAPS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite-I (KOMPSAT-I), to monitor and control the orbit and the attitude as well as to generate mission timelines and command plans. The MAPS has been designed using a top-down approach and modular programming method to ensure flexibility in modification and expansion of the system. Furthermore, a graphical user interface has been adopted to ensure user friendliness. Design, implementation, and testing of the KOMPSAT MAPS is discussed in this paper.  相似文献   

9.
In this paper, we study two dynamic frequency hopping (DFH)–based interference mitigation approaches for satellite communications. These techniques exploit the sensing capabilities of a cognitive radio to predict future interference on the upcoming frequency hops. We consider a topology where multiple low Earth orbit satellites transmit packets to a common geostationary equatorial orbit satellite. The FH sequence of each low Earth orbit–geostationary equatorial orbit link is adjusted according to the outcome of out‐of‐band proactive sensing scheme, performed by a cognitive radio module in the geostationary equatorial orbit satellite. On the basis of sensing results, new frequency assignments are made for the upcoming slots, taking into account the transmit powers, achievable rates, and overhead of modifying the FH sequences. In addition, we ensure that all satellite links are assigned channels such that their minimum signal‐to‐interference‐plus‐noise ratio requirements are met, if such an assignment is possible. We formulate two multi‐objective optimization problems: DFH‐Power and DFH‐Rate. Discrete‐time Markov chain analysis is used to predict future channel conditions, where the number of states are inferred using k‐means clustering, and the state transition probabilities are computed using maximum likelihood estimation. Finally, simulation results are presented to evaluate the effects of different system parameters on the performance of the proposed designs.  相似文献   

10.
Image fusion is a technical method to integrate the spatial details of the high‐resolution panchromatic (HRP) image and the spectral information of low‐resolution multispectral (LRM) images to produce high‐resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high‐quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity‐hue‐saturation and wavelet‐based methods.  相似文献   

11.
Mega satellite constellations in low earth orbit (LEO) will provide complete global coverage; rapidly enhance overall capacity, even for unserved areas; and improve the quality of service (QoS) possible with lower signal propagation delays. Complemented by medium earth orbit (MEO) and geostationary earth orbit (GEO) satellites and terrestrial network components under a hybrid communications architecture, these constellations will enable universal 5G service across the world while supporting diverse 5G use cases. With an unobstructed line‐of‐sight visibility of approximately 3 min, a typical LEO satellite requires efficient user terminal (UT), satellite, gateway, and intersatellite link handovers. A comprehensive mobility design for mega‐constellations involves cost‐effective space and ground phased‐array antennas for responsive and seamless tracking. An end‐to‐end multilayer protocol architecture spanning space and terrestrial technologies can be used to analyze and ensure QoS and mobility. A scalable routing and traffic engineering design based on software‐defined networking adequately handles continuous variability in network topology, differentiated user demands, and traffic transport in both temporal and spatial dimensions. The space‐based networks involving mega‐constellations will be better integrated with their terrestrial counterparts by fully leveraging the multilayer 5G framework, which is the foundational feature of our hybrid architecture.  相似文献   

12.
The DAVID (DAta and Video Interactive Distribution) mission is being carried out in the framework of the Science Small Missions Program of the Italian Space Agency. The mission is aimed at the deployment of two scientific telecommunication experiments through a low Earth orbit (LEO) satellite. The paper will focus on one of these experiments, that will test a satellite system architecture for the exchange of a large amount of data and high definition images through a W‐band link and a Ka‐band inter‐satellite link between the LEO and the ARTEMIS satellite. The proposed architecture, that will explore various innovative aspects, will also allow for the first time the distribution of large volumes of scientific data collected from the Antarctic region and other extremely remote areas of the Earth. The availability of a return link in the envisaged system will also allow interactive control of the various laboratories located in the remote sites. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The Satellite Operation System (SOS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite‐I, to monitor and control the spacecraft as well as to perform the mission operation. SOS was designed to operate on UNIX in the HP workstations. In the design of SOS, flexibility, reliability, expandability and interoperability were the main objectives. In order to achieve these objectives, a CASE tool, a database management system, consultative committee for space data systems recommendation, and a real‐time distributed processing middle‐ware have been integrated into the system. A database driven structure was adopted as the baseline architecture for a generic machine‐independent, mission specific database. Also a logical address based inter‐process communication scheme was introduced for a distributed allocation of the network resources. Specifically, a hot‐standby redundancy scheme was highlighted in the design seeking for higher system reliability and uninterrupted service required in a real‐time fashion during the satellite passes. Through various tests, SOS had been verified its functional, performance, and interface requirements. Design, implementation, and testing of the SOS for KOMPSAT‐I is presented in this paper.  相似文献   

14.
C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarizations over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analyzed in the first paper. In this second paper, the main topics are the effects of spatial resolution and signal-to-noise ratio. Airborne high-resolution SAR scenes are used to generate a sequence of images with increasingly coarser spatial resolution from 5 to 25 m, keeping the number of looks constant. The signal-to-noise ratio is varied between typical noise levels for airborne imagery and satellite data. Areal fraction of deformed ice and average deformation distance are determined for each image product. At L-band, the retrieved values of the areal fraction get larger as the image resolution is degraded. The areal fraction at C-band remains constant. The retrieved average distance between deformation features increases both at C- and L-bands as the image resolution gets coarser. The influence of noise becomes noticeable if its level is equal or larger than the average intensity backscattered from the level ice. The retrieval of deformation parameters using simulated images that resemble ERS-2 SAR, Envisat ASAR, and ALOS PALSAR data products is discussed. Basic differences between real and simulated ERS-2 SAR images are analyzed.   相似文献   

15.
Providing the localization algorithm for context‐aware services is the focus of many studies. This paper explores the properties of positioning models based on received signal strength (RSS) in PLMN (Public Land Mobile Network) networks. The effects of using the RSS at a mobile terminal from various systems, such as GSM and UMTS, as well as from multiple operators, have been investigated and discussed. Twenty‐two models, based on artificial neural networks, have been developed and verified using the data from an immense measurement campaign. The obtained results show that augmenting the model with additional RSS data, even from systems with poor radio‐visibility, may improve the positioning accuracy to as much as a 35thinspacem median distance error in a light urban environment. The degradation of accuracy in indoor environments and the complexity and latency of the models were also scrutinized. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, performance of delay‐sensitive traffic in multi‐layered satellite Internet Protocol (IP) networks with on‐board processing (OBP) capability is investigated. With OBP, a satellite can process the received data, and according to the nature of application, it can decide on the transmission properties. First, we present a concise overview of relevant aspects of satellite networks to delay‐sensitive traffic and routing. Then, in order to improve the system performance for delay‐sensitive traffic, specifically Voice over Internet Protocol (VoIP), a novel adaptive routing mechanism in two‐layered satellite network considering the network's real‐time information is introduced and evaluated. Adaptive Routing Protocol for Quality of Service (ARPQ) utilizes OBP and avoids congestion by distributing traffic load between medium‐Earth orbit and low‐Earth orbit layers. We utilize a prioritized queueing policy to satisfy quality‐of‐service (QoS) requirements of delay‐sensitive applications while evading non‐real‐time traffic suffer low performance level. The simulation results verify that multi‐layered satellite networks with OBP capabilities and QoS mechanisms are essential for feasibility of packet‐based high‐quality delay‐sensitive services which are expected to be the vital components of next‐generation communications networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
星载合成孔径雷达(SAR)通过采用不同成像模式,实现分辨率与成像带宽度的不同性能组合。常规星载SAR模式的成像带沿着卫星航迹方向,走向单一;但实际目标场景的地理走向多种多样,与沿卫星航迹方向的成像带地理走向不匹配的情况普遍出现,导致数采周期长或方位分辨低、存储与计算资源浪费。星载SAR非沿迹成像模式是解决该问题的新思路,其通过生成与卫星航迹不同向的直线型或曲线型的成像带,匹配于目标场景的实际地理走向,对目标场景进行“地理定制化”成像。该文主要从信息获取、成像处理等方面,讨论了星载SAR非沿迹成像新模式的主要机遇与挑战,并通过计算机仿真实现了星载SAR非沿迹成像模式的原理性验证。   相似文献   

18.
The integration of satellite and terrestrial networks is a promising solution for extending broadband coverage to areas not connected to a terrestrial infrastructure, as also demonstrated by recent commercial and standardisation endeavours. However, the large delays and Doppler shifts over the satellite channel pose severe technical challenges to traditional terrestrial systems, as long‐term evolution (LTE) or 5G. In this paper, 2 architectures are proposed for a low Earth orbit mega‐constellation realising a satellite‐enabled LTE system, in which the on‐ground LTE entity is either an eNB (Sat‐eNB) or a relay node (Sat‐RN). The impact of satellite channel impairments as large delays and Doppler shifts on LTE PHY/MAC procedures is discussed and assessed. The proposed analysis shows that, while carrier spacings, random access and RN attach procedures do not pose specific issues and hybrid automatic repeat request requires substantial modifications. Moreover, advanced handover procedures will be also required due to the satellites' movement.  相似文献   

19.
Link budgets between the mobile user terminal and a feeder link station (2‐m‐diameter antenna) through the quasi‐zenithal satellite system (QZSS) (7‐m‐diameter antenna for Tx, 5‐m‐diameter antenna for Rx) under the power flux density (PFD) limit were calculated for the Ka‐ and Ku‐band. The PFD limit for non‐geostationary satellites is applied for frequency sharing between QZSS and geostationary satellites. The maximum data rate in the Ka‐band was 1.7 times higher than in the Ku‐band in the forward link, while the maximum data rate at Ku‐band is nine times higher than that in the Ka‐band in the return link when the transmit power derived from the regulations of the PFD is applied. And it is more than three times higher than that in the Ka‐band when transmit power is fixed to 2W. In the forward link, maximum data rates are 149 kbps in the Ka‐band and 86 kbps in the Ku‐band when the user terminal antenna is non‐tracking (gain at the satellite direction is 7.1 dBi) and the frequency bandwidth per beam is 30 MHz. Required bandwidth per channel for a certain data rate is large, e.g. in Ka‐band, 20.9 MHz for 64 kbps, 125 MHz for 384 kbps, and 326 MHz for 1 Mbps. In the return link, the maximum data rates are 44 kbps in the Ku‐band and 13.6 kbps in the Ka‐band when the user terminal antenna gain in the satellite direction is 7.1 dBi and transmit power is 2 W. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a three‐layered medium Earth orbit (MEO), geostationary Earth orbit (GEO), and inclined geosynchronous orbit (IGSO) satellite network (IGMSN) is presented. Based on the idea of time‐slot division, a novel dynamic hierarchical and distributed QoS (quality of service) routing protocol (HDRP) is investigated, and an adaptive bandwidth‐constrained minimum‐delay path for IGSO/GEO/MEO hierarchical architecture constellation (BMDP‐HAC) algorithm is developed to calculate routing tables efficiently using the QoS metric information composed of delays and bandwidth. The performance of the IGMSN and HDRP is evaluated through simulations and theoretical analysis. And then, the paper further analyzes the performance of the IGMSN structure and the BMDP‐HAC algorithm with failure satellites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号