首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
采用不同的始锻温度、终锻温度和锻压速度对汽车转向节进行了锻造,并进行了拉伸性能和冲击性能的测试与分析。结果表明:随始锻温度从1050℃增大到1200℃或终锻温度从880℃增大到1040℃,汽车转向节的抗拉强度、屈服强度不断增大,而断后伸长率和冲击吸收功不断减小;随锻压速度从60 mm/s增加至300 mm/s,汽车转向节的抗拉强度、屈服强度先增大后减小,而断后伸长率和冲击吸收功先减小后增大。汽车转向节合理的始锻温度、终锻温度和锻压速度分别为1175℃、960℃、180 mm/s。  相似文献   

2.
采用不同的始锻温度和终锻温度对新型含铌汽车钛合金棒材进行锻造试验,并进行了力学性能测试与分析。结果表明:随始锻温度从970℃增加到1090℃、终锻温度从900℃增加到980℃,新型含铌汽车钛合金棒材的抗拉强度、屈服强度先增大后减小,断后伸长率变化幅度不大,其力学性能先提升后下降。与970℃始锻温度锻造时相比,1030℃始锻温度处理的新型含铌汽车钛合金棒材的抗拉强度和屈服强度分别增大了121和127 MPa,断后伸长率减小了1.6%;与900℃终锻温度锻造时相比,960℃终锻温度处理的新型含铌汽车钛合金棒材的抗拉强度和屈服强度分别增大了100和143 MPa,断后伸长率减小了1.4%。新型汽车含铌钛合金棒材的锻造工艺参数优选为:始锻温度1030℃、终锻温度960℃。  相似文献   

3.
采用不同的始锻温度和终锻温度对Mg-8Al-0.6Zn-0.3Ti-0.3In镁合金试样进行了锻压,并进行了力学性能和腐蚀性能的测试和分析。结果表明:随始锻温度和终锻温度的升高,试样力学性能和腐蚀性能均先提高后下降。与420℃始锻温度相比,480℃始锻温度下试样的的抗拉强度和屈服强度分别增大34、24 MPa,断后伸长率减小0.8%,腐蚀电位正移50 mV;与300℃终锻温度相比,360℃终锻温度下试样的的抗拉强度和屈服强度分别增大39、31 MPa,断后伸长率减小1%,腐蚀电位正移68 mV。Mg-8Al-0.6Zn-0.3Ti-0.3In镁合金的锻压温度优选为:480℃始锻温度、360℃终锻温度。  相似文献   

4.
试验研究了不同锻压工艺下活塞用Al-8Fe-1V-1.5Si-0.2Ce新型耐热铝合金的力学性能和热疲劳性能。结果表明,在其它工艺参数不变的情况下,随始锻温度从430℃增至490℃或终锻温度从345℃增至385℃,合金的力学性能和热疲劳性能均先增大后减小。始锻温度优选为475℃、终锻温度优选为365℃,在该工艺参数下,新型耐热锻压铝合金的25℃抗拉强度、屈服强度和断后伸长率分别达到476 MPa、434 MPa、10.2%。  相似文献   

5.
采用不同的始锻温度和终锻温度进行了建筑用铝基复合材料的锻造成形,并进行了耐磨损性能和力学性能的测试与分析。结果表明:随始锻温度从450℃提高至550℃,终锻温度从350℃提高至430℃,建筑用铝基复合材料的磨损体积先减小后增大、抗拉强度先增大后减小、断后伸长率变化不大,耐磨损性能和力学性能呈先提升后下降的趋势。当始锻温度为500℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较450℃始锻时减小了17×10~(-3)mm~3和增大了37 MPa;当终锻温度为410℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较350℃终锻时减小了15×10~(-3)mm~3和增大了30 MPa。建筑用铝基复合材料的始锻温度和终锻温度分别优选为500和410℃。  相似文献   

6.
采用不同的始锻温度和终锻温度对7075-0.5%V铝合金机械盘件进行了锻造,并进行了试样力学性能和耐磨损性能的测试、比较和分析。结果表明:在始锻温度440~520℃、终锻温度340~420℃,随始锻温度和终锻温度的升高,试样的抗拉强度和屈服强度先增大后减小,断后伸长率变化幅度很小,磨损体积先减小后增大,磨损性能先提升后下降。7075-0.5%V新型铝合金机械盘件的锻造工艺参数优选为:480℃始锻温度、380℃终锻温度。  相似文献   

7.
对AZ80Ce镁合金试样进行了锻造,研究了锻造温度对试样显微组织和力学性能的影响。结果表明:随始锻温度增大,试样的平均晶粒尺寸和断后伸长率先减小后增大,强度先增大后减小。与370℃始锻温度相比,400℃始锻温度使试样的平均晶粒尺寸和断后伸长率分别减小了47%和16.2%,抗拉强度和屈服强度分别增大了8.9%和12.8%;与270℃终锻温度相比,290℃终锻温度使试样的平均晶粒尺寸和伸长率分别减小了40%和14.2%,抗拉强度和屈服强度分别增大了5.8%和9.9%。汽车车轮用AZ80Ce镁合金的始锻温度和终锻温度分别优选为400、290℃。  相似文献   

8.
戚勇  姜一达 《热加工工艺》2022,(3):112-114,121
采用不同的锻压温度进行了汽车用AZ80-CeTi镁合金试样的挤锻复合成形,并进行了拉伸性能及冲击性能的测试与分析.结果 表明:随锻压温度的升高,挤锻复合成形试样的抗拉强度、屈服强度、冲击吸收功均先逐渐增大后缓慢减小,断后伸长率先减小后增大.和320℃锻压的结果相比,380℃锻压温度下的抗拉强度、屈服强度、冲击吸收功分别...  相似文献   

9.
为改善和优化汽车用镁合金的组织和力学性能,采用不同的始锻温度和终锻温度对汽车用镁合金进行了显微组织试验和力学试验,并进行了组织和力学性能的测试与分析。结果表明:随始锻温度从380℃升高至480℃、终锻温度从320℃升高至400℃,试样的平均晶粒尺寸和断后伸长率先减小后增大,抗拉强度和屈服强度先增大后减小;与380℃始锻相比,440℃始锻时合金的抗拉强度和屈服强度分别增大44和42 MPa;与320℃终锻相比,360℃终锻时合金的抗拉强度和屈服强度分别增大37和30 MPa。当始锻温度为440℃、终锻温度为360℃时,显微组织得到极大改善。汽车用镁合金的始锻温度和终锻温度分别优选为440和360℃。  相似文献   

10.
对A280镁合金机械零件进行不同固溶处理,取样后进行室温拉伸和冲击试验。结果表明:随固溶温度从350℃提高到470℃或固溶时间从8 h延长到24 h,机械零件的拉伸性能和冲击性能均先提高后下降。与350℃固溶相比,440℃固溶机械零件的抗拉强度增大39 MPa,屈服强度达增大38 MPa,断后伸长率减小2.1%,冲击吸收功增大17J;与8 h固溶相比,16 h固溶机械零件的抗拉强度增大21 MPa,屈服强度达增大20 MPa,断后伸长率减小1.4%,冲击吸收功增大15 J。AZ80镁合金机械零件的固温度和固溶时间分别优选为440℃、16 h。  相似文献   

11.
为了探索锻造温度对Al-Mg-Si-In铝合金性能的影响,选用不同的始锻温度和终锻温度进行了合金的锻造试验,并进行了合金室温力学性能和耐磨性能的测试与分析。结果表明:与400℃始锻温度相比,当445℃始锻时,合金的抗拉强度和屈服强度分别提高了10%、12%,磨损体积减小46%;与475℃始锻温度相比,当445℃始锻时合金的抗拉强度和屈服强度分别提高了9%、8%,磨损体积减小41%。在350℃终锻时合金的抗拉强度和屈服强度较320℃终锻时分别提高了10%、10%,磨损体积减小42%;抗拉强度和屈服强度较365℃终锻时分别提高了5%、4%,磨损体积则减小29%。合金的始锻温度和终锻温度分别优选为445、350℃。  相似文献   

12.
采用不同的始锻温度、终锻温度和锻比,对含锶数控机床钻头进行了锻压试验,并进行了表面硬度、高温耐磨损性能和高温冲击性能的测试与分析。结果表明,随着始锻温度、终锻温度、锻比的增加,钻头的表面硬度、高温磨损体积和高温冲击吸收功均先增大后减小。钻头的优化工艺为始锻温度1180℃、终锻温度950℃、锻比6。此工艺下,钻头的表面硬度达78 HRC,600℃磨损体积低至21×10~(-3)mm~3,600℃冲击吸收功高达58 J。  相似文献   

13.
进行了不同挤压温度和挤压比下汽车用Ti-6Al-4V-1Ni-0.5Cr合金管材的挤压成形,并进行了力学性能和耐磨损性能的测试、比较和分析。结果表明:钛合金管材试样的抗拉强度和屈服强度随挤压温度和挤压比的增加而先增大后减小,断后伸长率和磨损体积先减小后增大。与850℃挤压的结果相比,925℃挤压的试样抗拉强度和屈服强度分别增大了39、38 MPa,断后伸长率和磨损体积分别减小了1.7%、39.29%;与挤压比10的结果相比,挤压比16的试样抗拉强度和屈服强度分别增大了37、34 MPa,断后伸长率和磨损体积分别减小了3.7%、37.04%。Ti-6Al-4V-1Ni-0.5Cr钛合金管材试样的挤压工艺参数优选为挤压温度925℃和挤压比16。  相似文献   

14.
采用不同的始锻温度和终锻温度进行了6A02-0.5Cr铝合金机械铰链的锻造,并进行了力学性能和耐腐蚀性能的测试分析.结果 表明:随始锻温度和终锻温度的增加,试样的抗拉强度先增大后减小,断后伸长率和质量损失率先减小后增大,耐腐蚀性能先提升后缓慢下降.和450℃始锻温度的性能相比,始锻温度480℃锻造时试样的抗拉强度增大1...  相似文献   

15.
在锻比不变的情况下,采用不同锻造温度进行了AZ80Ce汽车轻合金的锻造,并进行了显微组织和力学性能的测试与分析。结果表明,随始锻温度从300℃提高至450℃或终锻温度从300℃提高至350℃,锻件的平均晶粒尺寸均先减小后增大,力学性能先提高后下降。始锻温度优选为425℃、终锻温度优选为330℃;在该优选工艺参数下锻件的抗拉强度、屈服强度和断后伸长率均达到最大值,分别为384 MPa、274 MPa、14.9%。  相似文献   

16.
为改善和提高AZ81镁合金的组织和力学性能,采用不同的始锻温度对AZ81镁合金进行了锻压试验,并进行了组织和力学性能的测试与分析。结果表明:随始锻温度从400℃升高至480℃,试样的平均晶粒尺寸和断后伸长率先减小后增大,而抗拉强度和屈服强度先增大后减小,试样的显微组织和力学性能均先改善后变差。与400℃时锻造相比,始锻温度为440℃时锻造的AZ81镁合金的平均晶粒尺寸减小了9.4μm,晶粒细化,组织得到了极大地改善;抗拉强度和屈服强度分别增大了63和71 MPa,断后伸长率减小了3.9%。因此,AZ81镁合金的始锻温度优选为440℃。  相似文献   

17.
使用五种不同的始锻温度进行了7A04铝合金服装经编机盘头的锻压,并进行了室温磨损试验和拉伸试验。结果表明:当始锻温度从370℃增至450℃时,盘头的磨损性能和力学性能均先提高后下降。盘头始锻温度优选为430℃。与370℃始锻相比,430℃始锻的7A04铝合金服装经编机盘头的磨损体积减小46.88%,抗拉强度和屈服强度分别增大7.96%、10.79%。  相似文献   

18.
采用不同浇注温度进行了40Cr VZr钢新型数控机床主轴的铸造,并进行了拉伸和磨损性能的测试与分析。结果表明:随浇注温度从1500℃增至1620℃,主轴的拉伸性能和磨损性能均先提高后下降。与1500℃浇注相比,1575℃浇注时主轴的抗拉强度和屈服强度分别增大56、50 MPa,断后伸长率减小,磨损体积减小15×10~(-3)mm~3。主轴的浇注温度优选为1575℃。  相似文献   

19.
在GCr15轴承钢中添加0.15wt%镧铈混合稀土和0.3 wt%Nb,制备了新型机床轴承钢,并进行了热处理工艺优化。结果表明,新型机床轴承钢的淬火温度优选为855℃、回火温度优选为160℃。最大的抗拉强度为984MPa,屈服强度为660MPa,断后伸长率为39.8%,抗弯强度为2547MPa。随淬火温度从780℃增至870℃,新型机床轴承钢的抗拉强度、屈服强度和抗弯强度均先增大后减小,断后伸长率先基本不变后急剧下降。随回火温度从120℃增至180℃时,新型机床轴承钢的抗拉强度、屈服强度、断后伸长率和抗弯强度均先增大后基本不变。  相似文献   

20.
采用不同的始锻温度、终锻温度对汽车用2A50-0. 5V-0. 3Sr新型铝合金试样进行了锻造成型,并对锻件的力学性能和热疲劳性能进行测试和分析。结果表明:480℃始锻温度、360℃终锻温度锻造的合金抗拉强度最高,断后伸长率、主裂纹平均长度和主裂纹平均宽度最小,力学性能和热疲劳性能最佳。与420℃始锻温度锻造相比,480℃始锻温度合金的抗拉强度增大了31 N/mm~2,主裂纹平均长度和主裂纹平均宽度分别减小了12μm、13μm,断后伸长率减小幅度较小;与320℃终锻温度合金相比,360℃终锻温度合金的抗拉强度增大了35 N/mm2,主裂纹平均长度和主裂纹平均宽度分别减小了15μm、14μm,断后伸长率减小幅度较小。汽车用2A50-0. 5V-0. 3Sr铝合金的锻造温度优选为:480℃始锻温度、360℃终锻温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号