首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
《Endocrine practice》2014,20(9):876-883
ObjectiveReport data on glucose control from 635 U.S. hospitals.MethodsPoint-of-care blood glucose (POC-BG) test data from January through December 2012 from 635 facilities were extracted. Glucose control was evaluated using patient-day–weighted mean POC-BG values. We calculated hypoglycemia and hyperglycemia rates, stratified by presence or absence of intensive care unit (ICU) admission, and we evaluated the relationship between glycemic control and hospital characteristics.ResultsIn total, 51,375,764 POC-BG measurements (non-ICU, 39,197,762; ICU, 12,178,002) from 2,612,966 patients (non-ICU, 2,415,209; ICU, 575,084) were analyzed. The mean POC-BG was 167 mg/dL for non-ICU patients and 170 mg/dL for ICU patients. The prevalence of hyperglycemia (defined as glucose value > 180 mg/dL) was 32.3 and 28.2% in non-ICU and ICU patients, respectively. The prevalence of hypoglycemia (defined as glucose value < 70 mg/dL) was 6.1 and 5.6% in non-ICU and ICU patients, respectively. In non-ICU and ICU settings, the patient-day–weighted mean glucose was highest in the smallest hospitals, in rural hospitals, and in hospitals located in the Northeast (all P < .01). For non-ICU patients, we observed a significant difference in the percentage of patient days with hypoglycemia by geographic region only (P < .001). In ICU patients, the prevalence of hypoglycemia varied significantly by hospital type (P < .03) and geographic region (P < .01).ConclusionIn this largest POC-BG data set analysis conducted to date, glycemic control varied according to hospital characteristics. Our findings remain consistent with previous reports. Among other variables, national benchmarking of inpatient glucose data will need to consider differences in hospital characteristics. (Endocr Pract. 2014;20:876-883)  相似文献   

2.
《Endocrine practice》2012,18(3):317-324
ObjectiveTo determine whether patterns of glucose changes before hypoglycemia vary according to the severity of the event.MethodsIn this retrospective analysis, point-ofcare blood glucose (POC-BG) data were obtained from the intensive care units (ICUs) of a convenience sample of hospitals that responded to a survey on inpatient diabetes management quality improvement initiatives. To evaluate POC-BG levels before hypoglycemic events, data from patients who experienced hypoglycemia during their time in the ICU were examined, and their glucose changes were assessed against a comparison group of patients who achieved a glycemic range of 80 to 110 mg/dL without ever experiencing hypoglycemia. Absolute glucose decrease, glucose rate of change, and glucose variability before hypoglycemic events (< 40, 40-49, 50-59, and 60-69 mg/ dL) were calculated.ResultsA total of 128 419 POC-BG measurements from 2942 patients in 89 ICUs were analyzed. Patients who experienced the most severe hypoglycemic episodes had the largest absolute drop in their glucose levels before the event (P < .001). The glucose rate of change before a hypoglycemic event increased with worsening hypoglycemia: mean (± standard deviation) glucose rate of change was-1.69 (± 2.98) mg/dL per min before an episode with glucose values less than 40 mg/dL, -0.56 (± 2.65) mg/dL per min before an episode with glucose values 60 to 69 mg/dL, but only -0.39 (± 0.70) for patients who attained a glucose range of 80 to 110 mg/dL without hypoglycemia (P < .001). Glucose variability before an event progressively increased with worsening biochemical hypoglycemia and was least among patients achieving glucose concentrations in the 80 to 110-mg/dL range without hypoglycemia (P < .001).ConclusionsAntecedent glucose change and variability were greater for patients who experienced hypoglycemia. If monitored, these patterns could potentially alert clinicians and help them take preventive measures. Further examination of how these parameters interact with other predisposing risk factors for hypoglycemia is warranted. (Endocr Pract. 2012;18:317-324)  相似文献   

3.
《Endocrine practice》2015,21(8):927-935
Objective: Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, and overall costs of care in hospitalized patients. At the Stratton VA Medical Center in Albany, New York, a process aimed to improve inpatient glycemic control by remotely assisting primary care teams in the management of hyperglycemia and diabetes was designed.Methods: An electronic query comprised of hospitalized patients with glucose values <70 mg/dL or >350 mg/dL is generated daily. Electronic medical records (EMRs) are individually reviewed by diabetes specialist providers, and management recommendations are sent to primary care teams when applicable. Glucose data was retrospectively examined before and after the establishment of the daily inpatient glycemic survey (DINGS) process, and rates of hyperglycemia and hypoglycemia were compared.Results: Patient-day mean glucose slightly but significantly decreased from 177.6 ± 64.4 to 173.2 ± 59.4 mg/dL (P<.001). The percentage of patient-days with any value >350 mg/dL also decreased from 9.69 to 7.36% (P<.001), while the percentage of patient-days with mean glucose values in the range of 90 to 180 mg/dL increased from 58.1 to 61.4% (P<.001). Glycemic variability, assessed by the SD of glucose, significantly decreased from 53.9 to 49.8 mg/dL (P<.001). Moreover, rates of hypoglycemia (<70 mg/dL) decreased significantly by 41% (P<.001).Conclusion: Quality metrics of inpatient glycemic control improved significantly after the establishment of the DINGS process within our facility. Prospective controlled studies are needed to confirm a causal association.Abbreviations: DINGS = daily inpatient glycemic survey EMR = electronic medical record HbA1c = glycated hemoglobin ICU = intensive care unit VA = Veterans Affairs  相似文献   

4.
《Endocrine practice》2014,20(9):884-893
ObjectiveChronic critical illness (CCI) is a term used to designate patients requiring prolonged mechanical ventilation and tracheostomy with associated poor outcomes. The present study assessed the impact of glycemic parameters on outcomes in a CCI population.MethodsA retrospective case series was performed including 148 patients in The Mount Sinai Hospital Respiratory Care Unit (2009-2010). Utilizing a semi-parametric mixture model, trajectories for the daily mean blood glucose (BG), BG range, and hypoglycemia rate over time identified low- (n = 87) and high-risk (n = 61) hyperglycemia groups and low- (n = 90) and high-risk (n = 58) hypoglycemia groups. The cohort was also classified into diabetes (DM, n = 48), stress hyperglycemia (SH, n = 85), and normal glucose (n = 15) groups.ResultsHospital- (28% vs. 13%, P = .0199) and 1-year mortality (66% vs. 46%, P = .0185) rates were significantly greater in the high- versus low-risk hyperglycemia groups, respectively. The hypoglycemia rate (< 70 mg/dL) was lower among ventilator-liberated patients compared to those who failed to liberate (0.092 vs. 0.130, P < .0001). In the SH group, both hospital mortality (high-risk hyperglycemia 48% and low-risk hyperglycemia 15%, P = .0013) and 1-year mortality (high-risk 74% and low-risk 50%, P = .0482) remained significantly different, while no significant difference in the diabetes group was observed. There were lower hypoglycemia rates with SH compared to diabetes (< 70 mg/dL: 0.086 vs. 0.182, P < .0001; < 40 mg/dL: 0.012 vs. 0.022, P = .0118, respectively).ConclusionTighter glycemic control was associated with improved outcomes in CCI patients with SH but not in CCI patients with diabetes. Confirmation of these findings may lead to stratified glycemic control protocols in CCI patients based on the presence or absence of diabetes. (Endocr Pract. 2014;20:884-893)  相似文献   

5.
《Endocrine practice》2010,16(2):219-230
ObjectiveTo determine the status of diabetes and hyperglycemia quality improvement efforts in hospitals in the United States.MethodsWe designed and administered a survey to a convenience sample of hospitals, and the responses were analyzed statistically.ResultsWe received 269 responses from 1,151 requested surveys. The sample was similar to hospitals in the United States on the basis of hospital type and geographic region (P = no significant difference) but not on the basis of number of beds (P < .001). Among responding hospitals, 39%, 21%, and 15% had fully implemented inpatient diabetes and hyperglycemia quality improvement programs for critically ill, non-critically ill, and perioperative patients, respectively. Moreover, 77%, 44%, and 49% had fully implemented protocols for hypoglycemia, hyperglycemic crises, and diabetic ketoacidosis, respectively. Variations in glucose target ranges were noted. The responding hospitals had no standard biochemical definition of hypoglycemia; 47% defined hypoglycemia as a glucose level ≤ 70 mg/dL, but 29%, 8%, 6%, and 4% used < 60, ≤ce:hsp sp="0.10"/>50, < 40, and < 80 mg/dL, respectively. Almost a third of reporting hospitals had no metric to track the quality of inpatient diabetes and hyperglycemia care. More than half (59%) indicated that they did not have an automated capability to extract and analyze glucose data. The most frequent barrier to implementing a glycemic control program was concern regarding hypoglycemia (61%).ConclusionHospitals are addressing the issue of inpatient diabetes and glycemic control but face obstacles to implementation of quality improvement programs and vary in their approach to management. Improving the consistency of glucose control practices within hospitals in the United States should help enhance patient care and safety. Future efforts to help hospitals overcome barriers to introducing glucose control programs could include developing standardized glycemic control metrics, improving data collection and reporting methods, and providing improved tools that enable clinicians to control glucose safely. (Endocr Pract. 2010;16:219-230)  相似文献   

6.
《Endocrine practice》2014,20(4):320-328
ObjectiveTo assess the impact of an intervention designed to increase basal-bolus insulin therapy administration in postoperative patients with diabetes mellitus.MethodsEducational sessions and direct support for surgical services were provided by a nurse practitioner (NP). Outcome data from the intervention were compared to data from a historical (control) period. Changes in basalbolus insulin use were assessed according to hyperglycemia severity as defined by the percentage of glucose measurements > 180 mg/dL.ResultsPatient characteristics were comparable for the control and intervention periods (all P  .15). Overall, administration of basal-bolus insulin occurred in 9% (8/93) of control and in 32% (94/293) of intervention cases (P < .01). During the control period, administration of basal-bolus insulin did not increase with more frequent hyperglycemia (P = .22). During the intervention period, administration increased from 8% (8/96) in patients with the fewest number of hyperglycemic measurements to 60% (57/95) in those with the highest frequency of hyperglycemia (P < .01). The mean glucose level was lower during the intervention period compared to the control period (149 mg/dL vs. 163 mg/dL, P < .01). The proportion of glucose values > 180 mg/dL was lower during the intervention period than in the control period (21% vs. 31% of measurements, respectively, P < .01), whereas the hypoglycemia (glucose < 70 mg/dL) frequencies were comparable (P = .21).ConclusionAn intervention to overcome clinical inertia in the management of postoperative patients with diabetes led to greater utilization of basal-bolus insulin therapy and improved glucose control without increasing hypoglycemia. These efforts are ongoing to ensure the delivery of effective inpatient diabetes care by all surgical services. (Endocr Pract. 2014;20:320-328)  相似文献   

7.
《Endocrine practice》2014,20(9):907-918
ObjectiveTo measure the efficacy and possible adverse consequences of tight blood glucose (BG) control when compared to relaxed control.MethodsA retrospective, observational study was conducted at a community-based teaching hospital system among adult, nonmaternity hospitalized patients admitted to the intensive care unit (ICU). Tight glycemic control of BG was compared with less strict BG control, and the following outcome measurements were compared: BG, average length of stay (ALOS), severe hypoglycemia, and mortality.ResultsBetween 2008 and 2012, 18,919 patients were admitted to the ICU. The mortality rate was significantly lower (P = .0001) in patients with an average BG between 80 and 110 mg/dL (8%) and 111 and 140 mg/dL (9.4%) than in patients with average BG between 141 and 180 mg/dL (12.9%). Using tight glycemic control (80 to 110 mg/dL), the ALOS in the ICU decreased from 4 to 2.9 days (P < .0001) among all patients, and from 4.2 to 2.1 days (P < .0001) among patients who had undergone coronary artery bypass graft. Comparatively, the ALOS for the hospital decreased from 9.4 to 8 days. The incidence of severe hypoglycemia (BG < 40 mg/dL) was higher (P = .01) in the tight BG control group (4.78%) compared with the relaxed control group (3.5%). This rate was lower than in previously published studies that analyzed the use of tight control.ConclusionTight glycemic control using protocolbased insulin administration resulted in a decrease in mortality and ALOS among all patients in the ICU. The incidence of severe hypoglycemic episodes was slightly higher in the tightly controlled group but remained lower than in previously published studies. (Endocr Pract. 2014;20: 907-918)  相似文献   

8.
《Endocrine practice》2014,20(1):41-45
ObjectiveHyperglycemia is associated with increased mortality in critically ill patients treated with total parenteral nutrition (TPN). The role of glucose variability (GV) in predicting outcomes in these patients is not known.MethodsThis retrospective study included medical and surgical patients receiving TPN in a community teaching hospital. GV was calculated by standard deviation (SD) of blood glucose (BG) values and by mean BG daily (Δ) change (daily max – daily minimum).ResultsA total of 276 medical and surgical patients (mean age: 51 ± 18 years), 19% with a history of diabetes mellitus (DM), and 74% with intensive care unit (ICU) admission were treated with TPN. During TPN, the mean daily BG was 142.9 ± 33 mg/dL; frequencies of hypoglycemia < 70 and < 40 mg/dL were 41% and 3%, respectively; and hospital mortality was 27.2%. The mean GV by SD was 38 ± 21 mg/dL and by mean (Δ) change 58 ± 34 mg/dL. GV was significantly higher in deceased patients (SD: 48 ± 25 vs. 34 ± 18 mg/dL and Δ change: 75 ± 39 vs. 51 ± 29 mg/dL, both P < .01) than surviving patients. Multivariate analysis adjusted for age, DM status, gender, APACHE (Acute Physiology and Chronic Health Evaluation) score, mean daily glucose, and hypoglycemia revealed that GV was an independent predictor of hospital mortality (P < .05). The association between GV and mortality was limited to patients without a history of DM and was not present in patients with DM.ConclusionHigh GV is associated with increased hospital mortality independent of the presence and severity of hyperglycemia or hypoglycemia during TPN therapy. Prospective randomized trials are needed to determine if reduction in GV with intensive glycemic control improves clinical outcomes in patients treated with TPN. (Endocr Pract. 2014;20:41-45)  相似文献   

9.
《Endocrine practice》2014,20(10):1051-1056
ObjectiveSome of the deleterious effects of hypoglycemia in hospitalized patients include increased rates of mortality and longer length of stay. Our primary objective was to identify the risk factors associated with severe hypoglycemia to identify those patients at highest risk.MethodsThe medical records of 5,026 patients with diabetes mellitus (DM) admitted in 2010 were reviewed to identify those patients that developed severe hypoglycemia (blood glucose [BG] < 40 mg/dL). We performed c2 tests to assess statistical significance. Adjusted logical regression was used to determine the risk factors for hypoglycemia in the hospital.ResultsOut of 5,026 DM patients included in our review, 81 experienced severe hypoglycemia (1.6%). Statistically higher proportions of chronic kidney disease (CKD; 69.1% vs. 46.9%, P < .001), congestive heart failure (CHF; 48.1% vs. 28.5%, P < .001), sepsis (49.4% vs. 12.5%, P < .001), insulin use (45.7% vs. 26.04%, P = .000), type 1 DM (21% vs. 5.1%, P = .000), and cirrhosis (14.8% vs. 7.2%, P = .009) were seen in the severe hypoglycemic group compared to the nonsevere hypoglycemic group. Overall, 84% of patients who experienced an episode of severe hypoglycemia in the hospital (BG < 40 mg/dL) had a previous episode of hypoglycemia (BG < 70 mg/dL). The odds ratios (ORs) for type 1 DM, sepsis, previous hypoglycemia, and insulin use were 3.43 (95% confidence interval [CI] 1.81, 6.49), 2.64 (95% CI 1.6, 4.35), 46.1 (95% CI 24.76, 85.74), and 1.66 (95% CI 1.02, 2.69), respectively.ConclusionPrior episodes of hypoglycemia in the hospital, the presence of type 1 DM, insulin use, and sepsis were identified as independent risk factors for the development of severe hypoglycemia in the hospital. (Endocr Pract. 2014;20:1051-1056)  相似文献   

10.
《Endocrine practice》2010,16(3):389-397
ObjectiveTo evaluate the impact of implementing a computerized physician order entry (CPOE)-based hyperglycemia inpatient protocol (HIP) on glycemic outcomes.MethodsThis retrospective, cross-sectional study compared blood glucose values, hemoglobin A1c values, diabetes medication profiles, and demographic data of diabetic patients admitted to medicine services between March 15, 2006, and April 11, 2006 (before CPOE-HIP protocol was adopted), with data of diabetic patients admitted between October 3, 2007, and October 30, 2007 (1 year after CPOE-HIP protocol was implemented).ResultsA total of 241 diabetic patients comprised the pre-CPOE-HIP group and 197 patients comprised the post-CPOE-HIP group. After the protocol was adopted, there was a decrease of 10.8 mg/dL in the mean glucose concentration per patient-day (175.5 ± 81.2 mg/dL vs 164.7 ± 82 mg/dL, P < .001). Additional glycemic control improvements included a 5% increase in patient-days with serum glucose concentrations between 70 and 150 mg/ dL (41.1% vs 46.1%, P = .008) and a 3.1% decrease in patient-days with glucose concentrations above 299 mg/dL (16.9% vs 13.8%, P = .023). The percentage of patientdays with glucose concentrations less than or equal to 50 mg/dL was not significantly different (0.95% vs 1.27%, P = .15). Compliance with the American Diabetes Association recommendation for hemoglobin A1c inpatient testing frequency increased from 37.3% to 64.5% (P < .001). The length of stay did not differ between the groups.ConclusionsImplementation of a hospital-wide, CPOE-based, hyperglycemia management protocol had a favorable impact onglucose targets, decreasing excessively high glucose levels without increasing clinically meaningful hypoglycemic events. Compliance with hemoglobin A1c testing recommendations also improved. (Endocr Pract. 2010;16:389-397)  相似文献   

11.
《Endocrine practice》2007,13(3):225-231
ObjectiveTo determine whether once-daily insulin glargine could provide better glycemic control after an abdominal surgical procedure than the traditional use of sliding scale regular insulin (SSRI).MethodsBecause 20% to 30% of patients undergoing gastric bypass have a history of overt diabetes and another 5% to 10% are estimated to have impaired glucose tolerance, we chose to study these patients. We treated 81 patients with postoperative blood glucose levels of more than 144 mg/dL after a Roux-en-Y gastric bypass surgical procedure. They were randomized to receive either SSRI or insulin glargine either directly or after initial intravenous insulin infusion in the intensive care unit (ICU).ResultsOverall, the mean blood glucose level after SSRI therapy was 154 ± 33 mg/dL, and the mean blood glucose value after insulin glargine treatment was 134 ± 30 mg/dL (P < 0.01). The mean blood glucose level for patients first treated with intravenous insulin infusion in the ICU was 125 mg/dL, in comparison with 145 mg/dL in the non-ICU patients whose treatment began directly with 0.3 U/kg of insulin glargine. Of 926 blood glucose measurements, only 3 were less than 60 mg/dL.ConclusionIn this study, control of postoperative hyperglycemia was significantly better with use of insulin glargine in comparison with SSRI therapy, and hypo-glycemia was very infrequent. (Endocr Pract. 2007;13: 225-231)  相似文献   

12.
《Endocrine practice》2012,18(4):529-537
ObjectiveTo evaluate the safety and efficacy of replacing a paper-based protocol with a computer-guided glucose management system (CGMS) for the treatment of postoperative hyperglycemia in the cardiovascular intensive care unit (CVICU).MethodsWith use of a before-and-after analysis, adult patients (≥ 18 years) discharged from the CVICU and treated with the paper protocol were compared with patients discharged from the CVICU and treated with the CGMS. Of the 1,648 patients analyzed, 991 were in the CGMS group. Clinical end points were evaluated by using the Wilcoxon test. Unadjusted and adjusted hazard ratios (HRs) for each hypoglycemic end point were calculated from Cox models with use of the proportional hazards regression procedure, and clinical end points were adjusted for potential confounders.ResultsPatients treated with the paper protocol were6 times as likely to experience clinical hypoglycemia (blood glucose ≤ 70 mg/dL) as patients treated with the CGMS (adjusted HR = 6.06; P < .0001) and more than 7 times as likely to experience severe hypoglycemia (blood glucose ≤ 40 mg/dL) (adjusted HR = 7.59; P = .01). Despite the increased risk of hypoglycemia, no significant difference in length of stay or mortality was observed between the groups.ConclusionCGMS treatment of postoperative hyperglycemia in CVICU patients can successfully attain goal glucose levels with a significant reduction in hypoglycemia in comparison with a paper protocol. This association persists after controlling for covariates. (Endocr Pract. 2012; 18:529-537)  相似文献   

13.
《Endocrine practice》2014,20(2):120-128
ObjectiveTo evaluate the effect of diabetes duration on efficacy and safety in patients with type 2 diabetes mellitus (T2DM) using insulin glargine versus comparator (oral antidiabetic drugs [OADs], dietary changes, or other insulins).MethodsData were pooled from randomized controlled clinical trials conducted in adults with T2DM with at least 24-week treatment with insulin glargine or a comparator, where predefined insulin titration algorithms were utilized to achieve fasting plasma glucose (FPG) concentrations of ≤ 100 mg/dL. Glycated hemoglobin A1C (A1C), FPG, and insulin dose and safety (hypoglycemia) outcomes were analyzed.ResultsNine studies were included in the analysis of 2,930 patients. Patients with shorter duration of diabetes were more likely to have greater reductions in A1C compared with those who had longer-duration disease (P < .0001). Disease duration did not affect change in FPG concentrations (P = .9017), but lower weight-adjusted insulin dose was correlated with longer-duration disease (P < .0001). Patients with longer-duration diabetes had increased risks of symptomatic hypoglycemia, confirmed hypoglycemia (self-monitored blood glucose < 50 mg/dL and < 70 mg/dL), and nocturnal hypoglycemia (all P < .001). No significant relationship was found between severe hypoglycemia and duration of diabetes. However, treatment with insulin glargine lowered A1C values more effectively than comparator treatments with fewer hypoglycemic episodes.ConclusionPatients with shorter-duration T2DM better achieved target A1C levels and had less hypoglycemia than those with longer disease duration. Insulin glargine was associated with reduced A1C and fewer hypoglycemic events than comparators, regardless of disease duration. (Endocr Pract. 2014;20:120-128)  相似文献   

14.
《Endocrine practice》2011,17(4):552-557
ObjectiveTo report the results of implementation of a Targeted Glycemic Management (TGM) Service pilot, with the goals of improving clinician awareness of available inpatient glycemic management protocols and improving responsiveness to and frequency of severe hyperglycemia.MethodsPatients with a blood glucose (BG) level ≥ 300 mg/dL who were hospitalized on a general medicine unit during three 12-week periods before, during, and after the TGM pilot were compared for responsiveness by the primary team, percentage of subsequent BG measurements between 80 and 180 mg/dL, and frequency of subsequent severe hyperglycemia (BG levels ≥ 300 mg/dL) and hypoglycemia (BG values < 70 mg/dL).ResultsIn comparison with pre-TGM and post-TGM periods, more patients during the TGM pilot had a modification of their glycemic regimen in response to severe hyperglycemia (49% versus 73% versus 50%, before, during, and after TGM, respectively; P = .044), and the percentage of patients with ≥ 50% of subsequent BG measurements in the desired range (27% versus 53% versus 32%; P = .035) was greatest during the TGM period. The incidence of subsequent severe hyperglycemia (20% versus 9% versus 16%; P = .0004) was lowest during the TGM period; however, the incidence of hypoglycemia was similar in all 3 periods (3.9% versus 3.7% versus 3.7%).ConclusionThese results indicate that a TGM Service can favorably influence glycemic management practices and improve glycemic control, but ongoing intervention is necessary for maintenance of these results. (Endocr Pract. 2011;17:552-557)  相似文献   

15.
《Endocrine practice》2009,15(4):302-312
ObjectiveTo assess the clinical and economic impact of hypoglycemia that develops during hospitalization of patients with diabetes.MethodsIn this retrospective cohort study, data from 70 hospitals were used to identify the first inpatient encounter for adult patients with diabetes. Patients were included if all blood glucose measurements were 70 mg/dL or higher during the first 24 hours and their primary discharge diagnosis was for a condition other than hypoglycemia. Those who developed laboratory evidence of hypoglycemia (blood glucose < 70 mg/dL after 24 hours) were compared with patients whose blood glucose values were all 70 mg/dL or higher. An alternative definition of hypoglycemia (blood glucose < 50 mg/dL after 24 hours) was also evaluated. We adjusted for potential confounders with multivariate models.ResultsHypoglycemia had an adverse effect on all outcomes among more than 100 000 diabetic patients. After adjustment, patients with diabetes who developed hypoglycemia had higher charges (38.9%), longer lengths of stay (3.0 days), higher mortality (odds ratio, 1.07; 95% confidence interval, 1.02-1.11), and higher odds of being discharged to a skilled nursing facility (odds ratio, 1.58; 95% confidence interval, 1.48-1.69) than diabetic patients without hypoglycemia (P < .01 for all). In all cases, using the lower threshold (< 50 mg/dL) to define hypoglycemia resulted in similar findings with a larger magnitude of differences.ConclusionsAlthough a direct causal relationship cannot be inferred, these study findings suggest the importance of carefully maintaining euglycemia during hospitalizations. Whether the observed worse outcomes were due to hypoglycemia itself or whether they were a marker of worse outcomes due to other causes requires further research. (Endocr Pract. 2009;15:302-312)  相似文献   

16.
《Endocrine practice》2015,21(9):986-992
Objective: Retrospective study to evaluate glycemic control outcomes after transition from the intensive care unit (ICU) to a non-ICU area in a national sample of U.S. hospitals.Methods: Mean point-of-care blood glucose (POC-BG) data were assessed overall and at 24 hours before and up to 72 hours after the transition. Comparisons in glucose variability (standard deviation of POC-BG data) were assessed. Impact on glycemic control was evaluated after accounting for hospital characteristics through logistic regression analysis.Results: POC-BG data were obtained from 576 hospitals. Overall mean (SD) POC-BG values in ICU versus non-ICU areas were 176 (24) versus 169 (21) mg/dL (P<.01). Mean (SD) of the ICU POC-BG data were 76 (16) versus 73 (16) mg/dL in the non-ICU data (P<.01). However, when comparing values of POC-BG in the last 24-hour ICU period with those from up to 72 hours posttransition, we found no differences, indicative of overall stable glycemic control and variability after transition. Any deterioration of glucose control following the transition was significantly associated with hospital size (P<.01): the smallest hospitals had the highest percentage of these cases. In addition, geographic region showed significant variability (P = .04), with hospitals in the Midwest and West having the highest proportion of cases in which glycemic control worsened following the transition.Conclusion: Glycemic control and variability did not change after transition from the ICU, but outcomes may depend on certain hospital characteristics. Inpatient glycemic control assessment should move beyond just cross-sectional studies and consider the impact of transitioning across inpatient areas. Other statistical approaches to studying this question should be evaluated.Abbreviations: DM = diabetes mellitus ICU = intensive care unit POC-BG = point-of-care blood glucose  相似文献   

17.
《Endocrine practice》2011,17(5):737-746
ObjectiveTo investigate whether changing the prandial regular insulin to rapid-acting insulin analogue in hospital medicine wards improves the timing of insulin delivery in relation to meals and improves patient safety and glucose control.MethodsThis open-label randomized controlled trial in type 2 diabetic patients compared insulin lispro with meals and basal insulin glargine (intervention) vs regular insulin before meals and basal neutral protamine Hagedorn insulin twice daily (control). The primary endpoint was the rate of targeted timing of insulin to meals (target time). In the intervention group, target time was defined as insulin administered from 15 minutes before to 15 minutes after the patient started a meal. For the control group, target time was defined as insulin administered from 30 minutes before to 30 minutes after the patient started a meal. Hypoglycemic, hyperglycemic, and severe hyperglycemic patient-days were compared between groups.ResultsTwenty-seven patients in the intervention group and thirty-three patients in the control group were studied. The percentage of times that the insulin was given within target time was significantly higher in the intervention group as a whole (88.9% vs 70.1%, P < .001) and was higher for lunch and the evening meal (90% vs 66.7% and 94.7% vs 70.1%, P < .001). The rate of hypoglycemia was lower in the intervention group (1.85% vs 15%, P < .001). The rate of hyperglycemia was similar in both groups (68.2% vs 59.8%, P = .224), but the intervention group had a higher rate of severe hyperglycemia (28.9% vs 12.9%, P = .003).ConclusionsThe use of prandial insulin analogues in medicine wards allows better timing with meals than regular insulin and results in better hypoglycemic outcomes. Higher rates of hyperglycemia with prandial analogues may need adjustment in insulin doses. (Endocr Pract. 2011:17:737-746)  相似文献   

18.
《Endocrine practice》2011,17(3):404-411
ObjectiveTo assess the safety and effectiveness of a standardized glycemic management protocol in patients with diabetes mellitus who undergo same-day surgery.MethodsThe perioperative glycemic management protocol consisted of preoperative instructions and perioperative order sets for management of subcutaneous and intravenous insulin. Patients with known diabetes admitted to same-day surgery during a 10-month period were observed. Patient demographic information and all capillary blood glucose (CBG) values obtained during the sameday surgery visit were collected. Hyperglycemia, defined as a CBG concentration of 200 mg/dL or greater, prompted notification of the attending anesthesiologist. While use of the perioperative order sets was encouraged, the attending anesthesiologist retained the prerogative to treat according to these order sets or their usual care. Physician compliance with the standardized order sets was determined by chart review in the patients who had a documented blood glucose value of 200 mg/dL or greater.ResultsPatients managed with the standardized order sets had greater reductions in CBG values (percentage change, 35 ± 20.5% vs 18 ± 24%, P < .001) and lower postoperative CBG values (186 ± 53 mg/dL vs 208 ± 63 mg/dL, P < .05) than patients who received usual care. No cases of intraoperative or postoperative hypoglycemia (CBG < 70 mg/dL) were observed in either group.ConclusionsA systematic approach to glycemic management that includes instructions for preoperative adjustments to home diabetic medications and order sets for treatment of perioperative hyperglycemia is safe and can be more effective than usual care for ambulatory surgery patients with diabetes. (Endocr Pract. 2011;17:404-411)  相似文献   

19.
《Endocrine practice》2009,15(7):682-688
ObjectiveTo determine whether glycemic control can be safely achieved with use of a simplified insulin infusion protocol in hospitalized patients who are not in the intensive care unit (ICU).MethodsWe developed a novel intravenous insulin protocol specifically designed for use in the non-ICU setting. We then collected clinical data on the first 30 patients treated with use of this protocol. Our study focused on safety and glycemic control.ResultsThe insulin infusion protocol was used in 30 patients for a total of 634 hours. A single hypoglycemic episode (glucose level < 60 mg/dL) occurred in 3 patients. The target mean glucose level of < 150 mg/dL was achieved in 9 hours. Once the glucose target had been achieved, the mean and median glucose concentrations were 156 mg/dL and 140 mg/dL, respectively.ConclusionUse of a simple intravenous insulin protocol can safely and effectively control the blood glucose level in patients in a non-ICU setting. (Endocr Pract. 2009;15:682-688)  相似文献   

20.
《Endocrine practice》2014,20(12):1303-1308
ObjectiveAlthough the importance of glycemic control is well established for patients with diabetes hospitalized for surgical problems, it has not been supported by clinical studies for patients with diabetes hospitalized on the medical floors.MethodsWe conducted a retrospective study of 378 patients with type 2 diabetes admitted for cardiac or infectious disease (ID) diagnosis between September 1, 2011, and August 1, 2012. Exclusion criteria included type 1 diabetes, admission to the intensive care unit (ICU), hospital stay shorter than 3 days, and daily glucocorticoid dose > 20 mg of methylprednisolone. The primary composite outcome included death during hospitalization, ICU transfer, initiation of enteral or parenteral nutrition, line infection, deep vein thrombosis, pulmonary embolism, rise in plasma creatinine by 1 or > 2 mg/dL, new infection, an infection lasting for more than 20 days, and readmission within 30 days and between 1 and 10 months after discharge.ResultsPatients were stratified by mean blood glucose (BG) level: group 1 had mean BG of < 180 mg/dL (n = 286; mean BG, 142 ± 23 mg/dL), whereas group 2 had mean BG levels > 181 mg/dL (n = 92; mean BG, 218 ± 34 mg/dL; P < .0001). Group 2 had a 46% higher occurrence of the primary outcome (P < .0004). The rate of unfavorable events was greater in cardiac and ID patients with worse glycemic control (group 2).ConclusionOur data strongly support a positive influence of better glycemic control (average glycemia < 180 mg/dL or 10 mmol/L) on outcomes of hospitaliza-tion in patients with type 2 diabetes. (Endocr Pract. 2014; 20:1303-1308)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号