首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Amorphous carbon (a-C) films with various thicknesses depending on the reaction time are deposited on the surface of Ti1.4V0.6Ni alloy electrodes for Ni-MH (nickel-metal hydride) battery by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). With the increasing deposition time, the Raman spectra show a gradually disordered sp2-bonding change of the films and the changing trend of sp2/sp3 is obtained by X-ray photoelectron spectroscopy. The a-C film of depositing for 30 min with the thickness of 400 nm shows a favorable stability in alkaline electrolyte, the capacity is enhanced by 36.2% after 50 cycles than the bare electrode, and the charge voltage is 80 mV lower than the bare one. The a-C film with high sp2-bonded carbon content effectively reduces the charge transfer resistance, and as a coating layer, the dissolution of V of the alloy is also inhibited. In particular, to get a proper discharge voltage and a stable capacity simultaneously, covering completely and an appropriate thickness of the a-C film are crucial for an expected performance.  相似文献   

2.
A superhard hydrogen-free amorphous diamond-like carbon (DLC) film was deposited by pulsed arc discharge using a carbon source accelerator in a vacuum of 2×10−4 Pa. The growth rate was about 15 nm/min and the optimum ion-plasma energy was about 70 eV. The impact of doping elements (Cu, Zr, Ti, Al, F(Cl), N) on the characteristics of DLC films deposited on metal and silicon substrates was studied aiming at the choice of the optimum coating for low friction couples. The microhardness of thick (≥20 μm) DLC films was studied by Knoop and Vickers indentations, medium thick DLC films (1–3 μm) were investigated using a ‘Fischerscope’, and Young's module of thin films (20–70 nm) was studied by laser induced surface acoustic waves. The bonds in DLC films were investigated by electron energy loss spectroscopy (EELS), X-ray excited Auger electron spectroscopy (XAES), and X-ray photoelectron spectroscopy (XPS). The adhesion of DLC films was defined by the scratch test and Rockwell indentation. The coefficient of friction of the Patinor DLC film was measured by a rubbing cylinders test and by a pin-on-disk test in laboratory air at about 20% humidity and room temperature. The microhardness of the Patinor DLC film was up to 100 GPa and the density of the film was 3.43–3.65 g/cm3. The specific wear rate of the Patinor DLC film is comparable to that of other carbon films.  相似文献   

3.
Hydrogenated amorphous carbon (a-C:H) films deposited from CH4 in a dual electron cyclotron resonance (ECR)–r.f. plasma were treated in N2 plasma at different r.f. substrate bias voltages after deposition. The etching process of a-C:H films in N2 plasma was observed by in situ kinetic ellipsometry, mass spectroscopy (MS), and optical emission spectroscopy (OES). Ex situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the etched film surface. XPS analysis proves that the nitrogen treatment on the a-C:H film, induced by r.f. substrate bias, causes a direct nitrogen incorporation in the film surface up to 15–17 at.% to a depth of about 20–40 Å depending on the r.f. bias. Various bonding states between carbon and nitrogen, such as tetrahedral sp3 C–N, and trigonal sp2 C–N were confirmed by the deconvolution analysis of C 1s and N 1s core level spectra. The evolution of etching rate and the surface roughness in the film measured by AFM exhibit a clear dependence on the applied r.f. bias. MS and OES show the various neutral species in the N2 plasma such as HCN, CN, and C2N2, which may be considered as the chemical etching products during the N2 plasma treatment of a-C:H film.  相似文献   

4.
A thick layer of amorphous silicon (a-Si) was deposited on industrial grade crystalline n-Si < 111 > substrate by means of electron beam evaporation. On top of a-Si layer, amorphous hydrogenated carbon (a-C:H) film was grown by direct ion beam deposition from acetylene precursor gas. In order to study on atomic level the a-C:H film growth on amorphous silicon, a theoretical model was developed in a form of reaction rate (kinetic) equations. Numerical simulation using this model has revealed that the ratio of sp3/sp2 content in the film is heavily influenced by relaxation rate of the carbon atoms in a sub-surface region of the film that were activated by ion irradiation. The final structure of a-C:H film does not depend much on elemental composition and structure of amorphous Si coating, provided that deposition procedure is not terminated at its initial stage but continues for more than 60 s. It became evident, therefore, that the use of a-Si interlayer with a-C:H films could be particularly beneficial when a need arises to minimize or eliminate the effect of the substrate. As one of such cases, a poor adhesion of amorphous carbon on steel and other ferrous alloys could be mentioned.  相似文献   

5.
Thermally-assisted (160 °C) liquid phase grafting of linear alkene molecules has been performed simultaneously on amorphous carbon (a-C) and hydrogen passivated crystalline silicon Si(111):H surfaces. Atomically flat a-C films with a high sp3 average surface hybridization, sp3 / (sp2 + sp3) = 0.62, were grown using pulsed laser deposition (PLD). Quantitative analysis of X-ray photoelectron spectroscopy, X-ray reflectometry and spectroscopic ellipsometry data show the immobilization of a densely packed (> 3 × 1014 cm? 2) single layer of organic molecules. In contrast with crystalline Si(111):H and other forms of carbon films, no surface preparation is required for the thermal grafting of alkene molecules on PLD amorphous carbon. The molecular grafted a-C surface is stable against ambient oxidation, in contrast with the grafted crystalline silicon surface.  相似文献   

6.
The a-C:H layers were deposited on silicon substrates in 100 kHz bipolar-pulsed discharges from a fixed mixture of acetylene and argon. Three types of a-C:H material with different hydrogen contents and hardness were obtained by adjusting the pressure during deposition to 2 Pa (hardness  23 GPa; hydrogen concentration  19 at.%), 4 Pa (20 GPa; 20 at.%) and 8 Pa (17 GPa; 24 at.%).Annealing was performed in high vacuum at a heating rate of 3 K/min up to a maximum temperature, varied between 200 °C and 900 °C. The annealing process was investigated in situ by mass spectrometric measurement of the effusion products as a function of temperature.After cooling down in high vacuum, ex situ measurements revealed changes in layer thickness (profilometer), hardness (nanoindentation), residual stress (from the curvature of the silicon substrates), elemental composition (elastic recoil detection analysis and Rutherford backscattering), UV/VIS optical properties (variable angle spectroscopic ellipsometry), and bonding (Raman spectroscopy and Fourier transform infrared spectroscopy).The films retained their hardness, level of compressive stress, and elemental composition at least up to 500 °C.The variation of the film thickness with the annealing temperature was systematically analysed. Up to 625 °C, the a-C:H thickness increased by 8.5% without measurable difference between the three layer types nor any influence of the initial a-C:H thickness. With further annealing the increase of the film thickness passed a maximum, the magnitude and temperature-position of which increased with decreasing pressure during deposition. The highest relative film thickness increase of 14% was found for a-C:H deposited at 2 Pa and annealed to 725 °C.Based on the results of the complementary characterisation methods, the effects of annealing in high vacuum on film structure and properties are discussed and fundamental processes, prevailing in characteristic annealing-temperature ranges, are derived.  相似文献   

7.
《Ceramics International》2016,42(11):12675-12685
Praseodymium (Pr) doped CdO thin films with high transparency and high mobility were deposited, using a homemade spray pyrolysis setup, on micro-slide glass substrates preheated at 300 °C. Polycrystalline nature and Cd-O bond vibration of deposited films were confirmed by X-ray diffraction, micro-Raman and Fourier transform infrared spectroscopy analyses. The oxidation state of Cd2+, O2−, and Pr3+ was confirmed by X-ray photoelectron spectroscopy analysis. The highest average particle size (92 nm-FESEM) and high RMS (13.48 nm-AFM) values are obtained for 0.50 wt% Pr doped CdO thin film. The optical band gap is varied between 2.38 eV and 2.52 eV, depending on the Pr doping concentration. Photoluminescence spectra revealed that Pr doped CdO thin film exhibits strong green emission at 582 nm. High mobility (82 cm2/V s), high charge carrier concentration (2.19×1020 cm−3) and high transmittance (83%) were observed for 0.50 wt% Pr doped CdO film. A high figure of merit (9.79×10−3 Ω−1) was obtained for 0.50 wt% Pr doped CdO thin films. The mechanism behind the above results is discussed in detail in this paper.  相似文献   

8.
The non-thrombogenicity of oxygen-plasma-treated DLC films was investigated as surface coatings for medical devices. DLC films were deposited on polycarbonate substrates by a radio frequency plasma enhanced chemical vapor deposition method using acetylene gas. The deposited DLC films were then treated with plasma of oxygen gas at powers of 15 W, 50 W, and 200 W. Wettability was evaluated by water contact angle measurements and the changes in surface chemistry and roughness were examined by X-ray photoelectron spectroscopy and atomic force microscope analysis, respectively. Each oxygen-plasma-treated DLC film exhibited a hydrophilic nature with water contact angles of 11.1°, 17.7° and 36.8°. The non-thrombogenicity of the samples was evaluated through the incubation with platelet-rich plasma isolated from human whole blood. Non-thrombogenic properties dramatically improved for both 15 W- and 50 W-oxygen-plasma-treated DLC films. These results demonstrate that the oxygen plasma treatment at lower powers promotes the non-thrombogenicity of DLC films with highly hydrophilic surfaces.  相似文献   

9.
《Ceramics International》2017,43(4):3774-3783
In this study, we systematically investigated the effects of negative bias voltage on the composition, deposition efficiency, microstructure, and mechanical properties of multi-arc ion plated (MAIP) AlTiN films. The films were deposited on high-speed steel substrates by MAIP at various negative bias voltages. The results indicated that the Al content [Al/(Al+Ti) ratio] and the deposition efficiency were significantly altered by the application of negative bias voltages. X-ray photoelectron spectroscopy analysis showed that the AlTiN films were composed of Ti–N and Al–N bonds. The macroparticles (MPs) on the film surface decreased with increasing negative bias voltage. We also discussed the different types of MPs found on the films and their influence on the process of determining the hardness of the films. The microhardness of the films depends on the negative bias voltages. The films deposited at −250 V exhibited a maximum hardness of ~45 GPa. The adhesion and frictional tests revealed that the film deposited at −150 V demonstrated the highest cracking resistance, the best adhesion under a critical load of 78 N, highest adhesion strength, and the lowest and stablest coefficient of friction at 0.23.  相似文献   

10.
Thin ZrC films were grown on (1 0 0) Si substrates at temperatures from 30 to 500 °C by the pulsed laser deposition technique. Auger electron spectroscopy investigations found that films contained oxygen concentration below 2.0 at%, while X-ray photoelectron spectroscopy investigations showed that oxygen is bonded in an oxy-carbide type of compound. The films’ mass densities, estimated from X-ray reflectivity curve simulations, and crystallinity improved with the increase of the substrate temperature. Williamson–Hall plots and residual-stress measurements using the modified sin2 ψ method for grazing incidence X-ray diffraction showed that the deposited films are nanostructured, with crystallite sizes from 6 to 20 nm, under high micro-stress and compressive residual stress. Nanoindentation investigations found hardness values above 40 GPa for the ZrC films deposited at substrate temperatures higher than 300 °C. The high density of the deposited films and the nm-size crystallites are the key factors for achieving such high hardness values.  相似文献   

11.
Bonding evolution of amorphous carbon incorporated with Si or a-C(Si) in a thermal process has not been studied. Unhydrogenated a-C(Si) films were deposited by magnetron sputtering to undergo two different thermal processes: i) sputter deposition at substrate temperatures from 100 to 500 °C; ii) room temperature deposition followed by annealing at 200 to 1000 °C. The hardness of the films deposited at high temperature exhibits a monotonic decrease whereas the films deposited at room temperature maintained their hardness until 600 °C. X-ray photoelectron spectroscopy and Raman spectroscopy were used to analyze the composition and bonding structures. It was established that the change in the mechanical property is closely related to the atomic bonding structures, their relative fractions and the evolution (conversion from C–C sp3  CC sp2 or CC sp2  C–Si sp3) as well as clustering of sp2 structures.  相似文献   

12.
Hard amorphous hydrogenated carbon (a-C:H) films were deposited by plasma decomposition of CH4 gas in a RF parallel-plate hollow-cathode system. The deposition system was built by placing a metallic plate in parallel to and in electrical contact with an usual RF-PECVD planar cathode. Self-bias versus RF power curves were used to make an initial characterization of plasma discharges in nitrogen gas atmospheres, for pressures between 10 and 100 mTorr. The strongly increased power consumption to obtain the same self-bias in the hollow-cathode system evidenced an increase in plasma density. The a-C:H films were deposited onto Si single crystalline substrates, in the − 50 to − 500 V self-bias range, at 5, 10 and 50 mTorr deposition pressures. The film deposition rate was found to be about four times than that usually observed for single-cathode RF-PECVD-deposited films, under methane atmosphere, at similar pressure and self-bias conditions. Characterization of film structure was carried out by Raman spectroscopy on films deposited at 10 and 50 mTorr pressures. Gaussian deconvolution of the Raman spectra in its D and G bands shows a continuous increase in the ID/IG integrated band intensity ratio upon self-bias increase, obeying the expected increasing behavior of the sp2 carbon atom fraction. The peak position of the G band was found to increase up to − 300 V self-bias, showing a nearly constant behavior for higher self-bias absolute values. On the other hand, the G band width showed a nearly constant behavior within the entire self-bias range. Nanohardness measurements have shown that films deposited with self-bias greater than 300 V are as hard as films obtained by the usual PECVD techniques, showing a maximum hardness of about 18 GPa. Films were also found to develop high internal compressive stress. The stress dependence on self-bias showed a strong maximum at about − 200 V self-bias, with a maximum stress value of about 5 GPa.  相似文献   

13.
Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were deposited by pulsed laser deposition (PLD). Nitrogen contents in the films were controlled by varying a ratio in the inflow amount between nitrogen and hydrogen gases. The film doped with a nitrogen content of 7.9 at.% possessed n-type conduction with an electrical conductivity of 18 Ω? 1 cm? 1 at 300 K. X-ray photoemission spectra, which were measured using synchrotron radiation, were decomposed into four component spectra due to sp2, sp3 hybridized carbons, C=N and C–N. A full-width at half-maximum of the sp3 peak was 0.91 eV. This small value is specific to UNCD/a-C:H films. The sp2/(sp3 + sp2) value was enhanced from 32 to 40% with an increase in the nitrogen content from 0 to 7.9 at.%. This increment probably originates from the nitrogen incorporation into an a-C:H matrix and grain boundaries of UNCD crystallites. Since an electrical conductivity of a-C:H does not dramatically enhance for this doping amount according to previous reports, we believe that the electrical conductivity enhancement is predominantly due to the nitrogen incorporation into grain boundaries.  相似文献   

14.
Aluminum oxide (Al2O3) thin films were deposited on silicon (100) and quartz substrates by pulsed laser deposition (PLD) at an optimized oxygen partial pressure of 3.0×10?3 mbar in the substrate temperatures range 300–973 K. The films were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy, spectroscopic ellipsometry, UV–visible spectroscopy and nanoindentation. The X-ray diffraction studies showed that the films deposited at low substrate temperatures (300–673 K) were amorphous Al2O3, whereas those deposited at higher temperatures (≥773 K) were polycrystalline cubic γ-Al2O3. The transmission electron microscopy studies of the film prepared at 673 K, showed diffuse ring pattern indicating the amorphous nature of Al2O3. The surface morphology of the films was examined by atomic force microscopy showing dense and uniform nanostructures with increased surface roughness from 0.3 to 2.3 nm with increasing substrate temperature. The optical studies were carried out by ellipsometry in the energy range 1.5–5.5 eV and revealed that the refractive index increased from 1.69 to 1.75 (λ=632.8 nm) with increasing substrate temperature. The UV–visible spectroscopy analysis indicated higher transmittance (>80%) for all the films. Nanoindentation studies revealed the hardness values of 20.8 and 24.7 GPa for the films prepared at 300 K and 973 K respectively.  相似文献   

15.
The hydrogenated amorphous carbon films doped with Ti and Si ((Ti,Si)–C:H) were deposited on silicon substrates using reactive magnetron sputtering Ti80Si20 composite target in an argon and methane gas mixture. The structures of the films were analyzed by X-ray photoelectron spectroscopy and Visible Raman spectroscopy. The morphologies were observed by atomic force microscope. The friction coefficients of the films were tested on the ball-on-disc tribometer. The results indicate that the sp3/sp2 ratios in the films can be varied from 0.18 to 0.63 by changing Ti and Si contents at various CH4 flow rates. The surface of the films becomes smoother and more compact as the CH4 flow rate increases. The lowest friction coefficient is as low as 0.0139 for the film with Ti of 4.5 at.% and Si of 1.0 at.%. Especially, the film exhibits a superlow value (μ < 0.01) under ambient air with 40% relative humidity in friction process. The superlow friction coefficient in ambient air may be, attributable to synergistic effects of a combination of Ti and Si in the film.  相似文献   

16.
We investigated the mechanical and tribological properties of hydrogenated amorphous carbon (a-C:H) films on silicon substrates by nanoindentation, ball-on-disc tribotesting and scratch testing. The a-C:H films were deposited from an argon/methane gas mixture by bias-enhanced electron cyclotron resonance chemical vapour deposition (ECR-CVD). We found that substrate biasing directly influences the hardness, friction and wear resistance of the a-C:H films. An abrupt change in these properties is observed at a substrate bias of about ?100 V, which is attributed to the bias-controlled transition from polymer- to fullerenelike carbon coatings. Friction coefficients in the range of 0.28–0.39 and wear rates of about 7 × 10?5 mm3/Nm are derived for the polymeric films when tested against WC–Co balls at atmospheric test conditions. On the other hand, the fullerenelike hydrogenated carbon films produced at ion energies > 100 eV display a nanohardness of about 17 GPa, a strong reduction in the friction coefficient (~ 0.10) and a severe increase in the wear resistance (~ 1 × 10?7 mm3/Nm). For these films, relative humidity has a detrimental effect on friction but no correlation with the wear rate was found.  相似文献   

17.
The article reports on properties of a-C films containing different amount of Cu. Films were sputtered by unbalanced magnetron from a graphite target with Cu fixing ring in argon under different deposition conditions. Relationships between the structure, mechanical properties, macrostress σ and coefficient of friction (CoF) μ of a-C/Cu films sputtered on Si substrates were investigated in detail. Besides, a special attention was concentrated on investigation of the effect of a deposition rate aD of the a-C/Cu film on its hardness H and macrostress σ. Four main issues were found: (1) the addition of Cu into a-C film strongly influences its structure and mechanical properties, i.e. the hardness H, effective Young's modulus E⁎ macrostress σ and CoF, and makes it possible to form electrically conductive films; here E =  E / (1  ν2), E is the Young's modulus, and ν is the Poisson's ratio, (2) the hardness H and compressive macrostress σ of the a-C/Cu film decrease with increasing aD due to decreasing of total energy ET delivered to the film during its growth, (3) hard a-C/Cu films with low value of CoF (μ  0.1) can be sputtered at high deposition rates aD ranging from ~ 10 to ~ 80 nm/min, and (4) CoF decreases with increasing (i) hardness H and (ii) resistance of film to plastic deformation characterized by the ratio H3/E2 but only in the case when compressive macrostress σ is low.  相似文献   

18.
In this study, we report the characterization of carbonaceous films deposited on metal substrates by liquid-phase electrodeposition in methanol. The characterization of carbonaceous films by electrodeposition was examined by means of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), secondary ion mass spectrometry (SIMS), atom probe (AP) and high resolution-elastic recoil detection analysis (HR-ERDA). From these results, it was found that the films deposited on the metal substrates were composed of the sp2 and sp3 carbon contents, of which the ratio was about 7:3. Furthermore, the films by electrodeposition contained much hydrogen. The hydrogen contents in the surface were about 60 at.% and those in the subsurface were a few 10 at.%.  相似文献   

19.
Micro- and nanocrystalline diamond (MCD and NCD) films are deposited on 4-inch silicon substrates by a large-area multi-wafer-scale hot filament chemical vapor deposition (HFCVD) system. The films are in-situ doped by boron. The chemical and crystalline structures are studied by electron probe microanalysis (EPMA), Raman spectroscopy and X-ray diffraction (XRD). The microcrystalline films have a preferred (111) texture, while the nanocrystalline films exhibit (220) texture. Strain gauges and cantilever beam arrays are micro-fabricated by surface micro-machining techniques to characterize the residual strain and strain gradient of the diamond films. Both micro- and nanocrystalline films have small compressive strains of − 0.052% and − 0.040% respectively, with the strain gradient of about 10 5 μm 1. These values are low enough to enable the realization of many MEMS devices.  相似文献   

20.
Quaternary Ti–B–C–N thin films are deposited on high-speed steel substrates by the reactive magnetron sputtering (RMS) technique. The microstructure, mechanical and tribological properties of Ti–B–C–N films with different carbon contents (from 28.9 at.% to 54.2 at.%) are explored systematically. The microstructure of Ti–B–C–N films deposited by RMS is consisted mainly of Ti(C, N) nano-crystals embedded into an amorphous matrix of a-C/a-CN/a-BN/a-BC. As the carbon content increases, the crystalline size of the films diminishes, but the hardness linearly increases from 14 GPa to 26 GPa. The friction coefficient of the films sliding against steel GCr15 balls in air decreases with the increase of carbon content, which shows that Ti–B–C–N films with both higher hardness and lower friction coefficient can be obtained by means of increasing the carbon concentration in the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号