首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
激光离散处理车轮钢-钢轨钢摩擦副的摩擦学性能研究   总被引:1,自引:0,他引:1  
将激光离散处理前后的车轮试样分别与钢轨试样匹配,利用滚动接触摩擦磨损试验机测试各摩擦副的摩擦系数和磨损率,研究激光离散处理对轮轨摩擦副滚动接触摩擦磨损性能的影响.结果表明:车轮试样经过激光离散处理后,其抗磨损性能大幅增加,对应的轮轨试样摩擦副的摩擦系数小幅增加,其对摩钢轨试样的磨损加剧.未处理车轮试样主要发生剥层磨损并伴随轻微的疲劳磨损;处理后的车轮试样主要发生疲劳磨损并伴随轻微的剥层磨损.这是由于激光离散处理提高了车轮试样表层材料的抗塑性变形能力,从而抑制了材料的剥层磨损.各钢轨试样均发生剥层磨损,但是车轮试样经激光离散处理后,对应钢轨试样的剥层磨损加剧.  相似文献   

2.
利用MJP-30A滚动磨损与接触疲劳试验机研究了两种水基摩擦改性剂(分别记为FM1和FM2)的最佳涂敷量,分析了FM1和FM2在最佳涂敷量下对轮轨磨损和损伤的影响. 结果表明:FM1和FM2单次的最佳涂敷量分别为14和8 μl. FM1介质下轮轨试样的磨损率明显降低,仅为干态下的23%和41%;FM2介质下车轮试样的磨损率略高于干态下,钢轨试样的磨损率为干态下的64%. 干态和FM2介质下轮轨试样表面出现起皮、剥落及明显的疲劳裂纹,试样剖面出现多层裂纹、支裂纹和次表层裂纹;FM1介质下轮轨试样损伤轻微,试样表面出现轻微起皮和点蚀,试样剖面出现少量的单层微裂纹,FM1可有效减缓轮轨的磨损与损伤.   相似文献   

3.
激光熔覆Cr3C2/Co基合金复合涂层组织与摩擦磨损性能研究   总被引:6,自引:0,他引:6  
在低碳钢表面激光熔覆制备了添加质量分数40%Cr3C2的钴基合金复合涂层(Cr3C2/Co),研究了激光熔覆Cr3C2/Co涂层的显微组织、相结构、显微硬度及其摩擦磨损性能,并与激光熔覆钴基合金涂层(Co60)进行了相同工艺条件下的对比试验.结果表明,激光熔覆Co60涂层以亚共晶方式结晶,涂层组织主要由大量初生γ-Co枝晶固溶体及其间的共晶组织γ-Co Cr23C6组成;激光熔覆Cr3C2/Co涂层以过共晶方式结晶,组织主要由未熔Cr3C2粒子、大量杆状和块状的富Cr碳化物(M7C3及M23C6型碳化物)以及其间的细小枝晶与共晶组织组成.添加Cr3C2改变了Co60涂层的凝固特征,未熔Cr3C2粒子起到了非自发形核作用,在其周围形成了许多富Cr碳化物,细化了涂层枝晶组织.激光熔覆Cr3C2/Co涂层的显微硬度及其耐磨性比Co60涂层明显提高.Co60涂层主要磨损机理为脆性剥落和犁削,Cr3C2/Co涂层的磨损机理主要为轻微犁削.  相似文献   

4.
采用激光熔覆技术在304不锈钢表面制备了Ni60/h-BN自润滑耐磨复合涂层,对涂层在600℃(去应力退火)进行1 h和2 h热处理,分析了热处理前后复合涂层的显微组织、硬度和摩擦学性能的变化.结果表明:三种涂层中,热处理1 h后涂层的显微硬度最大(最高值HV0.5765.0),在10 N干摩擦条件下,其摩擦系数为0.39,磨损率为3.37×10~(–6)mm/(Nm),该涂层表现出最好的耐磨减摩性能,磨损机理主要表现为轻微的磨粒磨损;未热处理的涂层摩擦系数为0.53,磨损率为6.39×10~(–6) mm/(Nm),磨损机理主要表现为脆性断裂、黏着磨损和磨粒磨损;热处理2 h后的涂层摩擦系数为0.39,磨损率为5.29×10~(–6)mm/(Nm),磨损机理主要表现为磨粒磨损和轻微黏着磨损.在本文试验条件下,后热处理1 h可有效提高激光熔覆自润滑耐磨涂层的硬度并改善其耐磨减摩性能.  相似文献   

5.
对激光冲击强化后的压力容器材料Q345R钢的耐腐蚀性能和抗疲劳性能进行研究。通过电化学实验,并结合扫描电子显微镜分析其耐腐蚀性。结果显示,有吸收层保护和无吸收层保护激光冲击后,相较于原试样,耐腐蚀性分别提升5.8倍和2.6倍;微观实验结果表明经过激光冲击后腐蚀试样表面裂纹明显少于未处理试样。但随着冲击次数增加,耐腐蚀性有所下降。疲劳试验结果显示,相同应力条件下,腐蚀1和2 h的疲劳寿命相较于原试样降低36.8%和56.4%,经过一次或三次激光冲击后试件的疲劳寿命分别提升43.8%和198.2%,经XRD检测,激光冲击能在表面形成一定深度的残余压应力层并抑制裂纹扩展。  相似文献   

6.
TC4合金及其表面TiCp/Ni基合金激光熔覆层的摩擦磨损性能   总被引:5,自引:0,他引:5  
利用УТИ TB-100型销-盘式摩擦磨损试验机研究了TC4合金及其表面TiCp/Ni基合金激光熔覆层在大气和真空(真空度10^-5Pa)环境中的干滑动摩擦磨损性能;采用透射电子显微镜分析了激光熔覆层的微观结构;用扫描电子显微镜观察TC4合金和TiCp/Ni基合金激光熔覆层磨损表面及其相应的偶件磨损表面形貌,进而对比分析了试验环境对材料摩擦磨损性能和磨损机理的影响.结果表明,材料在不同环境气氛压力下的摩擦磨损性能明显不同,TC4合金和TiCp/Ni基合金激光熔覆层在真空环境中的摩擦系数均高于在大气环境中的摩擦系数;TC4合金在真空环境中的质量磨损率低于在大气环境中的质量磨损率,TiCp/Ni基合金激光熔覆层在真空环境中的质量磨损率高于在大气环境中的质量磨损率.分析表明,TC4合金在大气环境中同硬质合金对摩时主要呈现氧化磨损特征,在真空环境中主要呈现粘着磨损特征;而TiCp/Ni基合金激光熔覆层在大气环境主要发生磨粒磨损,在真空环境中则发生磨粒磨损和粘着磨损.  相似文献   

7.
通过轮轨滚动接触模拟试验研究了干态、施加轨顶摩擦调节剂、润滑油和润滑脂工况下的轮轨摩擦、磨损和损伤行为,分析了不同润滑材料对轮轨滚动接触疲劳损伤的影响. 结果表明:施加轨顶摩擦调节剂可将轮轨摩擦系数调控至0.1~0.3范围内,车轮和钢轨试样磨损率较干态下分别降低了54.9%和26.3%,轮轨表面损伤、塑性变形和滚动接触疲劳损伤明显降低;施加润滑油和润滑脂具有更加显著的润滑和减磨效果,摩擦系数降低至0.1以下,磨损率降低85%以上,但润滑油和润滑脂会进入裂纹内部产生“油楔效应”,导致严重的滚动接触疲劳损伤,而轨顶摩擦调节剂的固体润滑特性则避免了该问题的产生.   相似文献   

8.
三种钢轨材料与车轮匹配时滚动磨损与损伤行为   总被引:3,自引:2,他引:1  
利用WR-1轮轨滚动磨损试验机研究了U71Mn、PD3、PG4三种钢轨与AAR-B车轮材料匹配时的滚动磨损与损伤性能.结果表明:不同钢轨材料的微观组织结构明显不同,钢轨硬度对轮轨滚动摩擦系数基本无影响;随钢轨硬度增加,钢轨磨损率减小,车轮磨损率增大,轮轨系统总磨损率先减小后增大.随试验时间增加,不同钢轨试样的硬化率趋于一致,车轮试样硬化率随钢轨试样硬度的增加而变大,轨轮硬度比随试验时间增加趋于相同.钢轨材料对轮轨试样表面损伤形貌有一定影响,随钢轨硬度增加轮轨表面犁沟现象明显,钢轨试样表面剥落损伤减轻且塑性变形层变薄,出现了明显的疲劳裂纹损伤,钢轨硬度增加导致车轮试样表面剥落加重且塑性变形层变厚;轮轨试样表层出现明显的白层现象,且车轮试样的白层更厚.  相似文献   

9.
火炮驻退机的节制环经常由于冲蚀磨损导致失效。为有效减少节制环磨损程度,提高节制环的可靠性,利用材料表面强化技术,通过微弧沉积与激光熔覆2种技术工艺,制备了铜基合金和镍基合金耐磨涂层,并测试和分析了不同种类涂层的组织形貌、涂层质量及显微硬度。在制备的4种耐磨涂层中,微弧沉积铜基合金涂层和激光熔覆镍基合金涂层的性能较好。为检验合金涂层的实际耐磨性能,在驻退机内安装节制环改进件,在反后坐装置试验台上实施后坐冲击试验。从节制环改进件的磨损形貌和冲蚀磨损量等实验数据得出,激光熔覆镍基合金涂层有较好的耐磨能力,可以作为增强火炮驻退机节制环耐磨能力的有效方法。  相似文献   

10.
采用喷丸强化对Cr-Ni-Mo系高强钢进行强化处理,利用销盘式摩擦磨损试验机考察了喷丸前后试样的摩擦磨损性能,研究了喷丸强化对Cr-Ni-Mo系高强钢试样的表面形貌、微观结构、显微硬度、残余应力和摩擦磨损特性的影响,进一步揭示了销盘接触摩擦过程中喷丸处理的强化机理.结果表明:喷丸强化在材料表层形成了塑性变形层并产生了位错区域,但提高了表面粗糙度;随着喷丸气压和覆盖率的增加,试样的表层显微硬度和表面残余压应力值显著提高;同时,喷丸试样表面形成的冲击弹坑改善了接触界面润滑效果,喷丸试样的摩擦系数由未处理试样的0.073最大降至0.023,其磨损率由1.25×10-5 mm3/(N·m)最大降至0.81×10-5 mm3/(N·m),平均摩擦系数最大降低68.49%,磨损率最大降低了35.20%;此外,原始试样的磨损机理为犁沟,喷丸试样主要为犁沟、氧化磨损和黏结磨损.  相似文献   

11.
选用W-Fe60-C合金粉末作为原材料,利用激光熔覆技术以最佳工艺参数(激光功率1.5 kW、扫描速度4 mm/s和送粉率10 g/min)在16Mn钢表面制备M23C6-WC (M: Cr, W, Fe)双相碳化物增强铁基熔覆层,并对其微观结构与物相进行表征,以及在商用铁基合金数据库的基础上,使用Thermo-Calc软件进行热力学计算来研究熔覆层的凝固过程. 此外,还对比研究了纯Fe60合金熔覆层、WC增强铁基熔覆层和M23C6-WC双相碳化物增强铁基熔覆层的显微硬度和摩擦磨损行为. 结果显示:M23C6-WC双相碳化物增强铁基熔覆层主要以α-Fe枝晶为基体、W、WC和M23C6复合碳化物为增强相. M23C6碳化物以连续网状结构分布在α-Fe枝晶间,WC颗粒以残留W为形核核心生长成块状分布在熔覆层中. 微观结构结合热力学计算结果表明:激光熔覆过程中M23C6-WC双相碳化物增强铁基熔覆层的凝固过程为液态+W→液态+W+WC→液态+W+WC+γ-(Fe,Ni)枝晶→W+WC+γ-(Fe, Ni)枝晶+M23C6→W+WC+α-Fe枝晶+M23C6. 根据显微硬度和磨损率测试可知:M23C6-WC双相碳化物增强铁基熔覆层的平均显微硬度为835.3 HV0.5,比纯Fe60合金涂层(604.6 HV0.5)和WC增强铁基熔覆层(658.9 HV0.5)分别增加了约230 HV0.5和180 HV0.5. M23C6-WC双相碳化物增强铁基熔覆层的磨损率为3.44×10?6 mm3/(N·m),比纯Fe60合金熔覆层[8.51×10?5 mm3/(N·m)]和WC增强铁基熔覆层[7.98×10?6 mm3/(N·m)]分别减少了约24.7倍和2.3倍.   相似文献   

12.
曲率半径对车轮滚动接触疲劳性能的影响   总被引:2,自引:0,他引:2  
滚动接触疲劳和磨损是铁路轮轨损伤的主要问题.本文中应用赫兹接触理论,在JD-1型轮轨模拟试验机上,通过改变试验冲角,研究了干态工况下曲率半径对车轮钢滚动接触疲劳性能的影响,并用光学显微镜和扫描电子显微镜观察车轮试样剖面与磨痕表面交界处的疲劳裂纹,分析不同曲率半径条件下车轮的滚动接触疲劳机理.结果表明:由于加工硬化的作用试验后所有试样的硬度均有提高;随着曲率半径的减小,车轮钢的磨损量增大,塑性流变层增厚且不均匀,车轮试样疲劳裂纹扩展加剧;裂纹在交变应力作用下容易继续向下扩展,从而形成严重的疲劳破坏.  相似文献   

13.
轮轨材料硬度匹配性能试验研究   总被引:9,自引:8,他引:1  
利用滚动磨损试验机研究了车轮钢与U71 Mn热轧钢轨的硬度匹配性能,分析了不同硬度车轮与U71 Mn钢轨匹配时的摩擦磨损与表面损伤行为.结果表明:车轮硬度对轮轨试样滚动摩擦系数基本无影响;随车轮硬度增加,车轮磨损量呈下降趋势,钢轨磨损量表现为线性增加,轮轨总磨损量呈先降低后增加的趋势,轨轮硬度相同时轮轨系统总磨损量达到最小.车轮硬度对车轮和钢轨试样表面损伤形貌有一定影响,车轮硬度低时车轮表面损伤以麻点式剥落损伤为主,随车轮硬度增加试样表面发生大块剥落损伤,对摩副钢轨试样主要表现为表面剥落损伤机制.  相似文献   

14.
轮轨滚动摩擦温升分析   总被引:9,自引:1,他引:8  
利用有限元法,考虑轮轨间非稳态热传导、与环境的热对流以及热辐射的影响,建立了轮轨滚动接触热耦合计算模型来模拟轮轨滚滑摩擦温升;在模拟轮轨纯滑动条件下,计算分析了由磨损引起的滑动接触斑的尺寸增大对轮轨温度场的影响;在模拟轮轨接触斑部分滑动工况时,针对不同蠕滑率、摩擦系数以及轴重对轮轨温度场的影响进行了相应的计算分析.结果表明:接触斑材料的磨损速度只影响磨损过程中的温度场分布,其稳态温度场分布基本一致;热载荷随着纵向载荷、蠕滑率以及摩擦系数的增大而增大,进而影响轮轨滚动接触热疲劳.  相似文献   

15.
接触应力对轮轨材料滚动摩擦磨损性能影响   总被引:12,自引:10,他引:2  
利用MMS-2A型微机控制摩擦磨损试验机研究了接触应力对轮轨材料的滚动摩擦磨损性能影响.结果表明:随接触应力的增加,滚动摩擦系数呈增加趋势,车轮和钢轨试样磨损加剧;相同接触应力水平下,车轮试样磨损量大于钢轨试样,表面损伤严重;随接触应力的增加,车轮试样表面从犁沟且轻微剥落向严重剥落损伤转变,钢轨试样表面损伤主要表现为犁沟效应并伴随有剥落现象,但相比车轮试样的剥离损伤要轻微.  相似文献   

16.
车轮材料特性对轮轨磨损与疲劳性能影响的研究   总被引:3,自引:1,他引:2  
在MMS-2A滚动摩擦磨损试验机上进行不同材料车轮与U75V热轧钢轨的匹配试验,研究材料特性对轮轨试样磨损与疲劳性能的影响.结果表明:随着车轮碳含量增加,组织中珠光体比例增加,珠光体中渗碳体片层间距减小,硬度增大;随着轮/轨硬度比增大,车轮表层的塑性变形层厚度逐渐减小,对摩副钢轨塑性变形层厚度呈现先增大后减小的趋势;车轮试样磨损形式由小剥离掉块向大剥离掉块转变,钢轨磨损机制由材料表层的轻微剥落向深层剥落磨损转变;提升车轮的硬度,轮轨表面的疲劳裂纹长度减小;且随着车轮硬度的增大,钢轨表面萌生的疲劳裂纹的末端扩展角度有增大的趋势,使钢轨的疲劳裂纹更容易向材料心部扩展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号