首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this paper we investigate the dust surface potential at the sheath edge of electronegative dusty plasmas theoretically, using the standard fluid model for the sheath and treating electrons and negative ions as Boltzmann particles but positive ions and dust grains as cold fluids. The dust charging model is self-consistently coupled with the sheath formation criterion by the dust surface potential and the ion Mach number, moreover the dust density variation is taken into account. The numerical results reveal that the dust number density and negative ion number density as well as its temperature can significantly affect the dust surface potential at the sheath edge.  相似文献   

2.
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz(THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation(ADE) in the finite difference time domain(FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated.Finally, some potential applications for Terahertz waves in information and communication are analyzed.  相似文献   

3.
A rigorous investigation is presented on the propagation characteristics of non-linear dust acoustic(DA)waves in an unmagnetized dusty plasma system containing non-thermal and vortex-like ions and Maxwellian electrons under the effect of a fluctuating charged dust fluid.The three-dimensional(3D)Burgers'equation and a new form of a lower degree modified 3D Burgers'equation with their analytical solutions are derived to study the features of shock waves in such plasmas.The effect of the population of non-thermal ions,the vortex-like ion parameter as well as the temperature ratios of ions and electrons on the evolution of shock waves in the presence of dust charge fluctuation is presented.This theoretical investigation might be effectively utilized to unveil the nature of many astrophysical plasma environments(Saturn's spokes etc.)where such plasmas are reported to have existed.  相似文献   

4.
The dust dynamics in a magnetized collisional plasma-sheath are numerically studied by using the fluid model. Isothermal electrons, cold fluid ions, cold fluid dust grains and immobile neutral particles are taken into account in the sheath. As dust can be created by detaching small pieces of the wall limiting plasma, naturally, these grains can have different sizes. Therefore, the influence of dust size on the sheath characteristics is considered. Assuming the dust–neutral collision cross section has a power law dependency on the dust velocity. The comparison of the effect of the dust radius in both specific collisional models shows that in the constant cross section model, dust size plays a more role with respect to the constant collision frequency. The effect of the dust size on dust velocity is investigated for different values of the power factor. It shows that dust velocity when reaching near the wall in constant cross section model is much less than constant mobility model, and the velocity of the smaller dust is lower on the wall. If dust density is very small, the kind of collisional model has no significant influence on the electric potential. But by increasing dust density, a little fall in the local electric potential and a little rise in the sheath thickness are seen in constant cross section model.  相似文献   

5.
A finite-difference time-domain (FDTD) algorithm is applied to study the electromagnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homogeneous plasma and inhomogeneous plasma. The collision frequency of plasma is a function of electron density and plasma temperature. The number density profile follows a parabolic function. A discussion on the effect of various plasma parameters on the reflection coefficient is presented. Under the one-dimensional case, transient electromagnetic propagation through various plasmas has been obtained, and the reflection coefficients of EM wave through various plasmas are calculated under different conditions. The results illustrate that a plasma cloaking system can successfully absorb the incident EM wave.  相似文献   

6.
The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect.Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles.In this study,the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces.The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived,assuming the plane wave approximation.The derived instability growth rate shows that,in collisional dusty plasmas,the Jeans instability strongly depends on the magnitude of the polarization force.  相似文献   

7.
To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator, radial profiles of plasma density(ne) and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips. Dusty plasma with dusts(a generation rate of 3 μg s~(-1) and a size of 1–10 μm)was produced via interactions between a high-power laser beam and a full tungsten target. As ne increases, the scale of the effects of dusty plasma injection on magnetized plasmas was decreased. Also, the duration of transient fluctuation was reduced. For numerical estimation of plasma density perturbation due to dusty plasma injection, the result was ~10% at a core region of the magnetized plasma with n_e of(2–5)×10~(11) cm~(-3) at steady state condition.  相似文献   

8.
Charging mechanism of dust particles has been considered as a growing research area in dusty plasma physics because of its exciting results. In this paper, we consider a low-temperature non- equilibrium multispecies plasma model, which consists of Vasyliunas–Cairns (VC) distributed electrons, negative/positive streaming ions, and negatively-charged dust grains to explain the charging mechanism of dust grains. The main theme of this work is to derive expressions of currents for negatively-charged dust grains (considering an equilibrium state position) in the plasma environment comprised of electrons and positive/negative streaming ions using the VC distribution function. Our proposed model shows that the dust grain surface potential is significantly affected by different plasma parameters such as the negative ion streaming velocity (Sn), positive ion streaming velocity (Si), spectral indices of VC distribution, negative ion charging state (Zn), positive ion charging state (Zi), and negative ion number density (ρ).  相似文献   

9.
The formation and propagation of nonlinear dust acoustic waves(DAWs) as solitary and solitary/shock waves in an unmagnetized, homogeneous, dissipative and collisionless dusty plasma comprising negatively charged micron sized dust grains in the presence of free and trapped electrons with singly charged non-thermal positive ions is discussed in detail. The evolution characteristics of the solitary and shock waves are studied by deriving a modified Korteweg–de Vries–Burgers(mKdV–Burgers) equation using the reductive perturbation method. The mKdV–Burgers equation is solved considering the presence(absence) of dissipation. In the absence of dissipation the system admits a solitary wave solution, whereas in the presence of dissipation the system admits shock waves(both monotonic and oscillatory) as well as a combination of solitary and shock wave solutions. Standard methods of solving the evolution equation of shock(solitary) waves are used. The results are discussed numerically using standard values of plasma parameters. The findings may be useful for better understanding of formation and propagation of waves in astrophysical plasma.  相似文献   

10.
The characteristics of dust are investigated in a magnetized plasma sheath with taking into account the gravitational force and collisions between dust and neutral. The model is based on using fluid method and solving the basic equations of fluid method numerically. As the Lorentz, gravitational and collisional forces depend on the dust radius, the numerical calculations are done for different values of dust radius. It enables us to study the effects of dust size on dust dynamics in a magnetized plasma sheath.  相似文献   

11.
This paper adopts an inertia-centric evolutionary model to study the excitation mechanism of new gravito-electrostatic eigenmode structures in a one-dimensional(1-D) planar self-gravitating dust molecular cloud(DMC) on the Jeans scale.A quasi-neutral multi-fluid consisting of warm electrons,warm ions,neutral gas and identical inertial cold dust grains with partial ionization is considered.The grain-charge is assumed not to vary at the fluctuation evolution time scale.The neutral gas particles form the background,which is weakly coupled with the collapsing grainy plasma mass.The gravitational decoupling of the background neutral particles is justifiable for a higher inertial mass of the grains with higher neutral population density so that the Jeans mode frequency becomes reasonably large.Its physical basis is the Jeans assumption of a self-gravitating uniform medium adopted for fiducially analytical simplification by neglecting the zero-order field.So,the equilibrium is justifiably treated initially as "homogeneous".The efficacious inertial role of the thermal species amidst weak collisions of the neutral-charged grains is taken into account.A standard multiscale technique over the gravito-electrostatic equilibrium yields a unique pair of Korteweg-de Vries(KdV) equations.It is integrated numerically by the fourth-order Runge-Kutta method with multi-parameter variation for exact shape analyses.Interestingly,the model is conducive for the propagation of new conservative solitary spectral patterns.Their basic physics,parametric features and unique characteristics are discussed.The results go qualitatively in good correspondence with the earlier observations made by others.Tentative applications relevant to space and astrophysical environments are concisely highlighted.  相似文献   

12.
Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves,particularly in the sub-wavelength regime.To investigate the collisional effect in such plasmas,we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave.The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity.Results show that the collisions between the electrons and the neutral particles,as well as the incident angle and the plasma thickness,can disturb the transmission and reduce reflection significantly.  相似文献   

13.
Electrostatic dusty plasma waves in a uniform magnetic field are studied.Unless the magnetic field is extremely strong,the dust particles can hardly be magnetized,while however,electrons and ions are easily done so.Electrostatic modes in such dusty plasmas can then be investigated by making use of the “Moderately magnetized” assumption of magnetized electrons and ions,and unmagnetized dust particles.In a high frequency range,due to the existence of dust component.both frequencies of Langmuir waves(parallel to the magnetic field)and upper hybrid waves(perpendicular to the field) are reduced.In the frequency range of ion waves,besides the effect on dust-ion-acoustic waves propagating parallel to the magnetic field.the frequency of ion cyclotron waves perpendicular to the magnetic field is also enhanced.In a very low dust frequency range,we find an “ion-cyclotron-dust-acoustic” mode propagating across the field line with a frequency even slower than dust acoustic waves.  相似文献   

14.
The evolution of three dimensional nonlinear shock waves is investigated in a dusty plasma with inhomogeneous particles’density,nonadiabatic dust charge variation,external magnetized field and power law dust size distribution.For this purpose,a modified nonlinear Korteweg-de Vries Burgers equation containing variable coefficients is obtained by reductive perturbation method.The effects of inhomogeneity,dust size distribution,external magnetized field,dust charge variation and obliqueness parameter on shock structures are numerically examined in great detail.Furthermore,research results show that oscillatory shock waves and monotone shock waves exist and transform each other in this system.  相似文献   

15.
The nonlinear properties of dust acoustic solitary waves in inhomogeneous dusty plasmas with two-ion temperature are investigated. By using the reductive perturbation theory, a modified variable coefficients Korteweg-de Vries (MKdV) equation is derived. The typical integral form of the Sagdeev potential is examined numerically. The numerical results show that the inhomogeneity, the two-ion temperature have strong influence on the nonlinear properties of dust acoustic solitary waves.  相似文献   

16.
Based on quasipotential analysis, a plasma sheath is studied through the derivation of the Sagdeev potential equation in dusty plasma coexisting with adiabatically heated electrons and ions. Salient features as to the existence of sheaths are shown by solving the Sagdeev potential equation through the Runge–Kutta method, with appropriate consideration of adiabatically heated electrons and ions in the dynamical system. It has been shown that adiabatic heating of plasma sets a limit to the critical dust speed depending on the densities and Mach number, and it is believed that its role is very important to the sheath. One present problem is the contraction of the sheath region whereby dust grains levitated into the sheath lead to a crystallization similar to the formation of nebulons and are compressed to a larger chunk of the dust cloud by shrinking of the sheath. Our overall observations advance knowledge of sheath formation and are expected to be of interest in astroplasmas.  相似文献   

17.
The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.  相似文献   

18.
This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma. Dust in a plasma has a large impact on the properties of the plasma. According to a probe diagnostic experiment on a dust-free plasma combined with machine learning, an experiment on a dusty plasma is designed and carried out. Using a specific experimental device, dusty plasma with a stable and controllable dust particle density is generated. A Langmuir probe is used to measure the electron density and electron temperature under different pressures, discharge currents, and dust particle densities. The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained. Finally, the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.  相似文献   

19.
In this article an investigation is presented on the properties of dust acoustic(DA)compressive solitary wave propagation in an adiabatic dusty plasma,including the effect of nonthermal positive and negative ions and non-isothermal electrons.The reductive perturbation method has been employed to derive the lower degree modified Kadomtsev-Petviashivili(mK-P),3D Schamel-Korteweg-de-Vries equation or modified Kadomtsev-Petviashivili(mK-P) equations for dust acoustic solitary waves in a homogeneous,unmagnetized and collisionless plasma whose constituents are non-isothermal electrons,singly charged positive and negative non-thermal ions and massive charged dust particles.The stationary analytical solutions of the lower degree mK-P and mK-P equations are numerically analyzed,where the effect of various dusty plasma constituents on DA solitary wave propagation is taken into account.It is observed that both the ions in dusty plasma play a key role in the formation of DA compressive solitary waves,and also the ion concentration and non-isothermal electrons control the transformation of the compressive potentials of the waves.  相似文献   

20.
Acoustic breathing modes of dusty plasmas have been investigated in a cylindrical system with an axial symmetry. The linear wave solution and a “dispersion” relation were derived.It was found that in an infinite area, the mode is reduced to a “classical” dust acoustic wave in the region away from the center. If the dusty plasma is confined in a finite region, however, the breathing (or heart-beating) behavior would be found as observed in many experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号