首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 843 毫秒
1.
为了解新型针翅套管双侧强化传热元件的换热特性,以润滑油-水为工质,对针翅套管进行了双侧强迫对流换热实验研究,分析了针翅高度与针翅管节距对换热的影响.研究结果表明:针翅套管换热元件具有良好换热效果,其双侧强迫对流换热特性与普通流道不同,由于针翅的扰动,流体在实验范围内已表现出紊流换热的特征;润滑油进出口温差对换热具有双重的影响.实验范围内,针翅管的针翅高度对换热影响较大,而针翅管节距对换热的影响相对较小.回归出的针翅套管双侧强迫对流换热实验关联式对实验结果能进行很好的关联,为进一步的研究工作奠定基础.  相似文献   

2.
微针肋热沉中流体流动及传热的数值模拟   总被引:1,自引:0,他引:1  
针对前期试验过程,采用商用软件FLUENT进一步分析了流体横掠方形微针肋热沉的流动及换热特性.结果表明,RNGk-ε紊流模型更适应试验工况;流体流线曲折,扰动强;流动过程中,流体压力不断降低,温度逐渐升高,在针肋区尾部形成大小不一的涡流,涡流中压力保持不变,但温度有较大波动;沿流动方向,各个肋的换热系数不断降低,但降低幅度在减小,到达一定肋数后几乎不再变化,且肋正面与背面的换热系数差别也随流动的发展不断减小.  相似文献   

3.
采用CFD模拟软件,结合实验研究,针对圆形、三角形和方形截面微针肋通道流动与换热进行了三维数值模拟分析.分别模拟了不同雷诺数Re下,三种形状肋片的绕流流场和肋阵温度场分布,并计算摩擦阻力系数f、努谢尔特数Nu等参数评价针肋微通道流动换热性能.结果表明,f随Re的增大而减小,且低Re下,三角形针肋的f最小.Nu随Re的增加而增大.三种形状中,圆形针肋的Nu数最大,换热效果最好.综合流动和换热特性评估,认为圆形针肋比方形和三角形针肋更优.通过实验对比发现,微尺度效应对模拟结果的影响有一定的误差,但是整体趋势与模拟结果一致.  相似文献   

4.
为探索变加热功率下微肋阵热沉内的对流换热规律,采用精密机械加工获得圆形、菱形和三角形微肋阵热沉,建立一体式加热试验系统,测试了微肋阵热沉的压力降、流动阻力系数、热阻等对流换热参数,研究Re为0~1 000时微肋阵内阻力及对流换热受加热功率的影响规律。研究结果表明,微肋阵内阻力系数先随加热功率增加而增大,圆形和菱形截面微肋阵中该现象在Re>400时消失,而三角形微肋阵在Re>250时消失。加热功率的增加强化了圆形和菱形截面微肋阵内的对流换热,三角形微肋阵的NuRe<250时随加热功率的增加而增大,当Re>250后则有所降低;加热功率对于圆形和菱形微肋阵热沉热阻的影响在Re<600时较为明显,而对于三角形微肋阵当Re>250后加热功率对于热阻的影响基本可以忽略。  相似文献   

5.
用实验方法研究了定常状态下,不同的肋高度和不同肋条数对螺旋内肋铜管内的流阻和换热特性的影响.螺旋内肋铜管内径为7 mm,内肋高为0和0.22 mm,0.24 mm和0.25 mm,肋条数为44和60,雷诺数在900~6 500范围之内.以无螺旋肋的光滑铜管作为基准,研究了螺旋内肋高和螺旋条数对换热效果及阻力的影响.结果表明:有螺旋肋的管内换热都得到了增强;螺旋肋高度为0.25 mm的铜管的换热效果明显大于其它两种肋高管的换热效果,肋高为0.22 mm和0.24 mm的内肋铜管的换热效果相当;肋的高度对阻力系数的影响却是随着肋高的增大而增大.螺旋肋的条数越大,阻力越大,换热效果也越好.  相似文献   

6.
反应堆堆芯超临界水流动传热特性复杂,对堆芯强化通道的研究较少.针对反应堆堆芯矩形强化通道的超临界水传热特性进行数值研究,采用雷诺应力湍流模型,研究了25 MPa超临界压力下,单根燃料棒在无肋、带长条肋布置和等距短肋布置的3种矩形流道内的流动传热特征.研究结果表明:堆芯矩形通道内设置肋片可强化传热,不同肋片布置方式的传热强化效果显著不同;强化通道内角部超临界水温度比无肋流道内角部温度高,强化流道径向截面内不同位置温差小;无肋流道最窄处超临界水存在流动死区,且死区随轴向高度变化较小,带长条肋布置流道最窄处超临界水流动死区范围减小,在近肋片区域出现流动死区,等距短肋流道内无明显流动死区;3种流道中,带等距短肋布置的流道相对合理.  相似文献   

7.
采用正交试验设计方法,以未使用过的润滑油为工质,对高Pr数流体在肋叉排列三维内肋管中的流动特性进行了试验研究.结果表明:采用肋叉排列的三维内肋管可使高Pr数流体在较低的雷诺数下实现从层流向湍流的转变,其临界雷诺数Recr范围为100~200.在工程应用中,采用三维内肋管进行高黏度流体换热,容易使流动处于换热系数较高的湍流区获得明显的强化换热效果.用最小二乘法对试验数据进行多元线性回归,得到了肋叉排列的三维内肋管肋形结构对流态转变的临界雷诺数的准则方程式,为后续的分区强化传热提供参考.  相似文献   

8.
应用CFD软件研究肋片对矩形截面螺旋通道湍流换热的强化作用,基于正交螺旋坐标系分析通道内流场和温度场分布.结果表明:对于单一矩形截面螺旋通道,换热壁面中心线附近受二次流影响较弱,换热效果较差.在此处安装扰流肋片后,矩形截面中心处产生了附加的二次流.研究范围内,加装肋片后的对流换热系数α是未加装肋片的1.03~1.2倍,流动阻力系数f是未加装肋片的1.003~1.033倍;强化传热因子j在0.911~1.067之间.低雷诺数下的低高度肋片综合强化换热效果较好.  相似文献   

9.
以(82+172+82)m连续梁拱组合式桥为工程背景,建立空间结构有限元模型.对桥梁自振频率、振型进行了计算分析;研究了拱肋刚度,横、斜撑刚度及其布置形式对连续梁拱组合式桥动力特性的影响.分析结果可为同类桥梁设计提供参考.  相似文献   

10.
反应堆堆芯超临界水流动传热特性复杂,为优化其传热特性,针对反应堆堆芯矩形强化通道的超临界水传热特性进行数值研究,采用雷诺应力湍流模型,研究了25 MPa超临界压力下,单根燃料棒在无肋、带长条肋和等距短肋布置的三种矩形流道内的流动传热特征.研究结果表明:堆芯矩形通道内设置肋片可强化传热,不同肋片布置方式的传热强化效果显著不同;强化通道内角部超临界水温度比无肋流道内角部温度高,强化流道径向截面内不同位置温差小;无肋流道最窄处超临界水存在流动死区,且死区随轴向高度变化较小,带长条肋布置流道最窄处超临界水流动死区范围减小,在近肋片区域出现流动死区,等距短肋流道内无明显流动死区;三种流道中,带等距短肋布置的流道相对合理.  相似文献   

11.
为了提高自然对流条件下大功率LED灯的平直肋片散热器的散热性能,对该类散热器开展了结构优化分析。利用最小熵产法分析了平直肋片的厚度、数量和高度,散热器质量、风速等因素对散热器流场及传热特性的影响,结果表明:随着肋片个数量的增加,无量纲熵产和温度熵产先增加后减小,温差熵产是摩擦熵产的10倍左右。此外在热流密度不变情况下,存在最佳肋片的几何尺寸使得无量纲熵产最小,据此优化散热器肋片结构使得散热器性能达到最优。  相似文献   

12.
This review paper summarizes constructal design progress performed by the authors for eight types of heat sinks with ten performance indexes being taken as the optimization objectives, respectively, by combining the methods of theoretical analysis and numerical calculation. The eight types of heat sinks are uniform height rectangular fin heat sink, non-uniform height rectangular fin heat sink, inline cylindrical pin-fin heat sink(ICPHS), plate single-row pin fin heat sink(PSRPHS), plate inline pin fin heat sink(PIPHS), plate staggered pin fin heat sink(PSPHS), single-layered microchannel heat sink(SLMCHS) with rectangular cross sections and double-layered microchannel heat sink(DLMCHS) with rectangular cross sections, respectively.And the ten performance indexes are heat transfer rate maximization, maximum thermal resistance minimization, minimization of equivalent thermal resistance which is defined based on the entransy dissipation rate(equivalent thermal resistance for short),field synergy number maximization, entropy generation rate minimization, operation cost minimization, thermo-economic function value minimization, pressure drop minimization, enhanced heat transfer factor maximization and efficiency evaluation criterion number maximization, respectively. The optimal constructs of the eight types of heat sinks with different constraints and based on the different optimization objectives are compared with each other. The results indicated that the optimal constructs mostly are different based on different optimization objectives under the same boundary condition. The optimization objective should be suitable chosen based on the focus when the constructal design for one heat sink is performed. The results obtained herein have some important theoretical significances and application values, and can provide scientific bases and theoretical guidelines for the thermal design of real heat sinks and their applications.  相似文献   

13.
针对冷凝器强化传热,采用开缝肋片提高换热效率是一种有效的手段.通过对平直肋片和2种开缝肋片空气侧传热与压降的数值模拟得出,开缝肋片的传热性能远高于平直肋片,与均匀开缝肋片相比,后部区域局部开缝肋片的性能更好.应用场协同原理,对数值模拟得到两肋片之间流体的温度场、速度场和压降沿程变化进行了分析.结果表明,开缝肋片有效强化传热的根本原因是肋片开缝改善了速度与温度梯度的协同性,在场协同性较差的位置开缝会得到更好的换热效率.  相似文献   

14.
将高温热管翅作为翅片强化换热的设备,可以大大地提高换热器的传热能力。为预测高温热管翅强化传热性能,推动高温热管翅的开发与应用,将12根高温热管翅的冷凝段排成2排置于管道内组成换热设备。运用FLUENT软件,选用TGrid网格技术方法、k-ε湍流模型、SIMPLE压力-速度耦合方法对该换热设备进行数值模拟计算。数值模拟结果直观地表征了高温热管翅强化管内换热的温度场、速度场以及对流换热系数场;表明管道换热设备内因为有了高温热管翅,流动速度加大,表面换热能力加强。第1排热管翅的换热系数高于第2排热管翅的换热系数。随流量的增加,对流换热系数增大。数值计算结果与实验结果进行比较,表明理论值与实验值的基本趋势相吻合。  相似文献   

15.
本文简要地叙述了在传热设备中,高温烟气的热量通过金属壁面传递给水的情况下,采用针翅管作为对流受热面可以提高传热量的原理,并提出粗略的计算方法。本文还以已开发的采用针翅管的传热设备为实例,应用上述计算方法进行计算,同时以所得的结果与采用相同受热面的普通烟管进行比较,其传热量明显增加,约可提高20%。本文最后对采用针翅管的传热设备的实测数据进行分析来说明采用针翅管作为对流受热面所取得的实际效果。  相似文献   

16.
采用实验方法对比制冷剂R410A在6根强化换热管和1根光滑管内的流动沸腾换热特性. 实验测试段饱和温度为6 ℃,进出口干度分别为0.2和0.9,质量流速变化范围为80~350 kg/(m2s).实验结果表明:三维强化管相对光滑管流动沸腾换热系数的强化倍率可达1.14~1.53,因为强化表面上的凹痕阵列能够增强两相间湍动、提高汽化核心数目并打断液膜边界层制造分离流和二次流从而强化换热. 三维强化管中,管1EHT在低质量流速范围内具有较好的换热性能,而管2EHT在相对较高的质量流速时强化性能更优;齿形参数不同的3根内螺纹管间的换热系数差距较大,其中当内螺纹管螺旋角足够大时齿高与液膜厚度之比相近的内螺纹管具有较好的换热性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号