首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
During the process of immortalization, at least two mortality checkpoints, M1 and M2, must be bypassed. Cells that have bypassed M1 (senescence) have an extended life span, but are not necessarily immortal. Recent studies have shown that ectopic expression of the catalytic subunit of telomerase (hTERT) enables normal human cells to bypass senescence (M1) and oncogene transformed cells to avert crisis (M2) and become immortal. However, it is unclear whether hTERT expression is sufficient for normal human fibroblasts to overcome both M1 and M2 and become immortal. We have investigated the role of telomerase in immortalization by maintaining mass cultures of hTERT-transduced primary human fetal lung fibroblasts (MRC-5 cells) for very long periods of time (more than 2 years). In the present studies, up to 70% of MRC-5 cells were transduced with retroviral vectors that express hTERT. hTERT-transduced cells exhibited high levels of telomerase activity, elongation of telomeres, and proliferation beyond senescence. However, after proliferating for more than 36 population doublings (PDLs) beyond senescence, the overall growth rate of hTERT-expressing cells declined. During theses periods of reduced growth, hTERT-transduced MRC-5 cells exhibited features typical of cells in crisis, including an increased rate of cell death and polyploidy. In some instances, very late passage cells acquired a senescence-like phenotype characterized by arrest in the G1 phase of the cell cycle and greatly reduced DNA synthesis. At the onset of crisis, hTERT-transduced cells expressed high levels of telomerase and had very long telomeres, ranging up to 30 kb. Not all cells succumbed to crisis and, consequently, some cultures have proliferated beyond 240 PDLs, while another culture appears to be permanently arrested at 160 PDLs. Late passage MRC-5 cells, including postcrisis cells, displayed no signs of malignant transformation. Our results are consistent with the model in which telomerase and telomere elongation greatly extends cellular life span without inducing malignant changes. However, these investigations also indicate that hTERT-expressing cells may undergo crisis following an extended life span and that immortality is not the universal outcome of hTERT expression in normal diploid fibroblasts.  相似文献   

5.
Expression of the catalytic subunit of human telomerase, hTERT, extends human primary fibroblast life span. Such life span extension has generally been reported to be accompanied by net telomere lengthening, which led to the hypothesis that it is the telomere lengthening that causes the life span extension. Here we show that hTERT+C and hTERT-FlagC, mutant telomerase proteins with either 10 additional residues or a FLAG epitope added to the hTERT C-terminus, confer significant but limited life span extension to IMR90 human primary lung fibroblasts. However, as the cells continue to grow for >100 population doublings past their normal senescence point, bulk telomere length continues to erode to lengths much shorter than those seen at the senescence of control telomerase-negative cells. Expression of hTERT+C immortalized IMR90 cells transformed by three different oncogenes. Again, bulk telomeres became much shorter than those of the control cells at crisis. Additional hTERT mutants were constructed and analyzed similarly. Enzymatically active hTERT-N125A+T126A, like other previously reported conserved GQ domain mutants and C-terminally HA-tagged hTERT, failed to extend life span. Another GQ domain mutant, hTERT-E79A, was indistinguishable from wild-type hTERT in its cell growth effects, but there was no net telomere lengthening. These results uncover further hTERT allele-specific phenotypes that uncouple telomerase activity, net telomere lengthening and life span extension.  相似文献   

6.
Human bone marrow stromal cells (hBMSCs) are defined as pluripotent progenitor cells with the ability to differentiate into osteoblasts, chondrochytes, adipocytes, muscle cells, and neural cells. Recently, it has been shown that telomerase expression not only extends the replicative life-span and maintains their bone-forming capability of hBMSCs. We previously reported that human adipose tissue stromal cells (hATSCs) have similar characteristics with hBMSCs. In this study, hATSCs were stably tranduced by a retrovirus containing the gene for the catalytic subunit of human telomerase (hTERT) and MSCV-neo retrovirus, and 12 clones for hTERT-hATSCs and 6 clones for MSCV-hATSCs were isolated. The tranduced clones (hATSC-TERTs) had high telomerase activity, which was maintained during subsequent subcultivation. The transduced cells of two representative clones have undergone more than 100 population doublings (PD) and continue to proliferate, whereas control cells underwent senescence-associated proliferation arrest after 36-40 PD. The cells had a normal karyotype, and increased differentiation potential, especially osteogenic lineage. Intraventricular injection of hATSC-TERTs in ischemic rat brain showed enhancement of functional recovery as like hATSC-MSCVs. The tissue engraftment of hATSCs and hTERT-hATSCs in NOD/SCID mice after intravenous administration was identical. These results further support a similarity between hBMSCs and hATSCs. hATSCs can be used as an alternative of pluripotent stromal cells for cell replacement therapy as like hBMSCs.  相似文献   

7.
Human bone marrow mesenchymal stem cells (hMSCs) are promising candidates for cell therapy and tissue engineering. The life span of hMSCs during in vitro culture is limited. Human telomerase catalytic subunit (hTERT) gene transduction can prolong the life span of hMSCs and maintain their potential of osteogenic differentiation. We established a line of hMSCs transduced with exogenous hTERT (hTERT-hMSCs) and investigated its sustaining cellular properties in a long-term culture. This line of hTERT-hMSCs was cultured for 290 population doublings (PDs) without loss of contact inhibition. Under adipogenic, chondrogenic and osteogenic induction, hTERT-hMSCs at PD 95 and PD 275 could differentiate respectively into adipocytes, chondrocytes, and osteocytes. hTERT-hMSCs at these PDs showed no transforming activity through both in vitro assay of cell growth in soft agar and in vivo assay of tumorigenicity in NOD-SCID mice. Karyotype analyses showed no significant chromosomal abnormalities in hTERT-hMSCs at these PDs. These results suggested that the hTERT-hMSCs at lower population doubling levels (PDLs) should be considered as a cell model for studies of cellular senescence, differentiation and in vitro tissue engineering experiment because of its prolonged life span and normal cellular properties.  相似文献   

8.
9.
Nagai A  Kim WK  Lee HJ  Jeong HS  Kim KS  Hong SH  Park IH  Kim SU 《PloS one》2007,2(12):e1272
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and beta-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.  相似文献   

10.
11.
12.
Immortalization of human preadipocytes   总被引:1,自引:0,他引:1  
Darimont C  Macé K 《Biochimie》2003,85(12):1231-1233
  相似文献   

13.
14.
15.
16.
17.
Most human somatic cells contain no or very low levels of telomerase. The over-expression of the catalytic subunit (hTERT) of human telomerase is a common method to generate cells with a greatly prolonged lifespan. These cells serve as models for cells that are either difficult to cultivate or have a limited lifespan in vitro. In addition, hTERT over-expressing cells are thought to be a useful resource for tissue engineering and regenerative medicine.While tumour suppressors and cell cycle checkpoints are maintained for an extended period in most hTERT over-expressing cells we found that there is a gradual change in gene expression over a range of 130 population doublings (PD) for the majority of genes analysed. Seven genes were significantly down-regulated with increasing population doublings (PDs), while only two were up-regulated. One gene, stanniocalcin 2, was highly expressed in parental fibroblasts but completely diminished as a consequence of hTERT transgene expression.These data demonstrate that in hTERT over-expressing cells two different types of expression changes occur: one can be directly associated with hTERT transgene expression itself, while others might occur more gradual and with varying kinetics. These changes should be taken into account when these cells are used as functional models or for regenerative purposes.  相似文献   

18.
Telomerase immortalization of human myometrial cells   总被引:6,自引:0,他引:6  
  相似文献   

19.
20.
Cells expressing the neuronal stem cell marker Nestin are present in the human pancreas but the biological role of these cells has yet to be resolved. We report here the establishment with the catalytic subunit of human telomerase (hTERT) of a line of normal human cells representing this cell type. Primary human cells derived from the ducts of the pancreas were transduced with an hTERT cDNA. The infected cells became positive for telomerase, failed to senesce, and were still proliferating after more than 150 doublings. The immortalized cells were positive for the expression of Nestin (at both the mRNA and protein levels) and were found to be free of cancer-associated changes: diploid and expressing wild type p16(INK4a), p53, and K-Ras. An established line of normal human cells representing this cell type should be of great value to help define the biological properties of this novel cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号