首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.  相似文献   

2.
Functional regeneration of complex large-scaled defects requires both soft- and hard-tissue grafts. Moreover, bone constructs within these grafts require an extensive vascular supply for survival and metabolism during the engraftment. Soft-tissue pedicles are often used to vascularize bony constructs. However, extensive autologous tissue-harvest required for the fabrication of these grafts remains a major procedural drawback. In the current work, a composite flap is fabricated using synthetic soft-tissue matrices and decellularized bone, combined in vivo to form de novo composite tissue with its own vascular supply. Pre-vascularization of the soft-tissue matrix using dental pulp stem cells (DPSCs) and human adipose microvascular endothelial cells (HAMECs) enhances vascular development within decellularized bones. In addition, osteogenic induction of bone constructs engineered using adipose derived mesenchymal stromal cells positively affects micro-capillary organization within the mineralized component of the neo-tissue. Eventually, these neo-tissues used as axial reconstructive flaps support long-term bone defect repair, as well as muscle defect bridging. The composite flaps described here may help eliminate invasive autologous tissue-harvest for patients in need of viable grafts for transplantation.  相似文献   

3.
Porous grafts facilitate constructive remodeling of blood vessels. Incorporating multiple biomimetic cues to porous grafts can promote vascular regeneration. However, the fabrication of such medical devices remains challenging. Here, beta-sheet rich silk nanofibers (BSN) are added to poly(vinyl alcohol) (PVA) solution and aggregated under a cylindric electric field to form circumferentially and axially oriented tubular structures, to simulate the endothelial and media layers of blood vessels. PVA in the aligned tubes is then crystallized through repeat freezing–thawing process to offer mechanical performances. Through tuning the ratio of BSN and PVA, the composite tubes with dual anisotropic microstructures exhibit better mechanical properties than pure PVA vascular grafts. Significantly improved cell adhesion, spreading, proliferation, and alignment are achieved. Both endothelial and smooth muscle cells show improved biological activity on the grafts due to the regulatory roles of the aligned structures. In vivo studies reveal the formation of endothelial layers within four weeks of implantation, ensuring long-term patency. The endothelial and smooth muscle double layers are regenerated after eight months postimplantation, forming hierarchical microstructures and compositions similar to native vessels. The porous composite grafts with multiple aligned structures guide vascular remodeling to regenerate blood vessels, demonstrating potential for clinical translation.  相似文献   

4.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   

5.
Clinically, skin color, temperature, and capillary perfusion are used to assess tissue viability following microvascular tissue transfer. However, clinical signs that arise as a consequence of poor perfusion become evident only after several hours of compromised perfusion. This study demonstrates the potential usefulness of optical/infrared multispectral imaging in the prognosis of tissue viability immediately post-surgery. Multispectral images of a skin flap model acquired within 1 h of surgical elevation are analyzed in comparison to the final 72-h clinical outcome with a high degree of correlation. Regional changes in tissue perfusion and oxygenation present immediately following surgery are differentiated using fuzzy clustering and image processing algorithms. These methodologies reduce the intersubject variability inherent in infrared imaging methods such that the changes in perfusion are reproducible and clearly distinguishable across all subjects. Clinically, an early prognostic indicator of viability such as this would allow for a more timely intervention following surgery in the event of compromised microvasculature.  相似文献   

6.
Owing to their self-renewal and differentiation ability, stem cells are conducive for repairing injured tissues, making them a promising source of seed cells for tissue engineering. The extracellular microenvironment (ECM) is under dynamic mechanical control, which is closely related to stem cell behaviors. During the design and fabrication of biomaterials for regenerative medicine, the physiochemical properties of the natural ECM should be closely mimicked, which can reinforce stem cell lineage choice and tissue engineering. By reproducing the biophysical stimulations that stem cells may experience in vivo, many studies have highlighted the key role of biophysical cues in regulation of cell fate. Optimization of biophysical factors leads to desirable stem cell functions, which can maximize the effectiveness of regenerative treatment. In this review, the main biophysical cues of biomaterials, including stiffness, topography, mechanical force, and external physical fields are summarized, and their individual and synergistic influence on stem cell behavior is discussed. Subsequently, the current progress in tissue regeneration using biomaterials is presented, which directs the design and fabrication of functional biomaterial. The mechanisms via which biophysical cues activate cellular responses are also analyzed. Finally, the challenges in basic research as well as for clinical translation in this field are discussed.  相似文献   

7.
Engineered and decellularized extracellular matrices (ECM) are receiving increasing interest in regenerative medicine as materials capable to induce cell growth/differentiation and tissue repair by physiological presentation of embedded cues. However, ECM production/decellularization processes and control over their composition remain primary challenges. This study reports engineering of ECM materials with customized properties, based on genetic manipulation of immortalized and death‐inducible human mesenchymal stromal cells (hMSC), cultured within 3D porous scaffolds under perfusion flow. The strategy allows for robust ECM deposition and subsequent decellularization by deliberate cell‐apoptosis induction. As compared to standard production and freeze/thaw treatment, this grants superior preservation of ECM, leading to enhanced bone formation upon implantation in calvarial defects. Tunability of ECM composition and function is exemplified by modification of the cell line to overexpress vascular endothelial growth factor alpha (VEGF), which results in selective ECM enrichment and superior vasculature recruitment in an ectopic implantation model. hMSC lines culture under perfusion‐flow is pivotal to achieve uniform scaffold decoration with ECM and to streamline the different engineering/decellularization phases in a single environmental chamber. The findings outline the paradigm of combining suitable cell lines and bioreactor systems for generating ECM‐based off‐the‐shelf materials, with custom set of signals designed to activate endogenous regenerative processes.  相似文献   

8.
Wearable monitoring systems provide valuable insights about the state of wellness, performance, and progression of diseases. Although conventional wearable systems have been effective in measuring a few key biophysical markers, they offer limited insights into biochemical activity and are otherwise cumbersome in ambulatory modes of use, relying on wired connections, mechanical straps, and bulky electronics. Recent advances in skin‐interfaced microfluidics, stretchable/flexible electronics, and mechanics have created new wearable systems with capabilities in real‐time, noninvasive analysis of sweat biochemistry in combination with biophysical metrics. Here, the latest technologies in multifunctional sweat sensing systems are presented with a focus on novel microfluidic designs, fully‐integrated wireless electrochemical sensors, and hybrid biochemical/biophysical sensing capabilities, creating real‐time physiological insights.  相似文献   

9.
Understanding the biophysical relationships between stem cells and applied biomaterials can facilitate the ability to control the functions and behaviors of stem cells. However, the role of 3D microenvironment in stem cell biology remains largely unexplored, compared with that of 2D cell-culture environment. Here, a new strategy that improves the efficacy of Yamanaka's four-factor-induced cellular reprogramming into induced pluripotent stem cells (iPSCs) by incorporating cues derived from the 3D microenvironment and biophysical ligands is reported. Among the various 3D hydrogel systems tested, methacrylated hyaluronic acid (HA) hydrogel significantly improves cellular reprogramming into iPSCs. Additionally, the initial upregulation of CD44 in encapsulated cells in low-level methacrylated soft HA hydrogel accelerates the reprogramming. In conclusion, the reported HA hydrogel with low modulus accelerates reprogramming into iPSCs and thus offers potential advantages for translational applications.  相似文献   

10.
The glucagon-like peptides include glucagon, GLP-1, and GLP-2, and exert diverse actions on nutrient intake, gastrointestinal motility, islet hormone secretion, cell proliferation and apoptosis, nutrient absorption, and nutrient assimilation. GIP, a related member of the glucagon peptide superfamily, also regulates nutrient disposal via stimulation of insulin secretion. The actions of these peptides are mediated by distinct members of the glucagon receptor superfamily of G protein-coupled receptors. These receptors exhibit unique patterns of tissue-specific expression, exhibit considerable amino acid sequence identity, and share similar structural and functional properties with respect to ligand binding and signal transduction. This article provides an overview of the biology of these receptors with an emphasis on understanding the unique actions of glucagon-related peptides through studies of the biology of their cognate receptors.  相似文献   

11.
A major hindrance to successful alveolar bone augmentation and ridge preservation using synthetic scaffolds is insufficient vascularization in the implanted bone grafts. The slow ingrowth of host vasculature from the bone bed of alveolar bone to the top of the implanted bone grafts leads to limited bone formation in the upper layers of the implanted grafts, which hinders the subsequent implantation of titanium dental implants. In this study, macroporous beta‐tricalcium phosphate (β‐TCP) scaffolds with multiple vertical hollow channels are fabricated that play a similar role as blood vessels for nutrient diffusion and cell migration. The results show that the hollow channels accelerate the degradation rate of the β‐TCP scaffolds and the in vitro release of a bone forming peptide‐1, which significantly promote proliferation and osteogenesis of human bone mesenchymal stem cells on the channeled scaffolds, compared to nonchanneled scaffolds in vitro. More volume of newly formed bone tissues with more blood vessels are augmented in the channeled scaffolds when implanted in mandibular bone defects of beagle dogs. Channeled scaffolds significantly promote new bone formation and augment the height of the mandible. These findings indicate channeled scaffolds facilitate vascularization and bone formation and have great potential for vascularized bone augmentation.  相似文献   

12.
Producing mature and functional cardiomyocytes (CMs) by in vitro differentiation of induced pluripotent stem cells (iPSCs) using only biochemical cues is challenging. To mimic the biophysical and biomechanical complexity of the native in vivo environment during the differentiation and maturation process, polydimethylsiloxane substrates with 3D topography at the micrometer and sub‐micrometer levels are developed and used as cell‐culture substrates. The results show that while cylindrical patterns on the substrates resembling mature CMs enhance the maturation of iPSC‐derived CMs, sub‐micrometer‐level topographical features derived by imprinting primary human CMs further accelerate both the differentiation and maturation processes. The resulting CMs exhibit a more‐mature phenotype than control groups—as confirmed by quantitative polymerase chain reaction, flow cytometry, and the magnitude of beating signals—and possess the shape and orientation of mature CMs in human myocardium—as revealed by fluorescence microscopy, Ca2+ flow direction, and mitochondrial distribution. The experiments, combined with a virtual cell model, show that the physico‐mechanical cues generated by these 3D‐patterned substrates improve the phenotype of the CMs via the reorganization of the cytoskeletal network and the regulation of chromatin conformation.  相似文献   

13.
Soft hydrogels such as alginate are ideal substrates for building muscle in vitro because they have structural and mechanical properties close to the in vivo extracellular matrix (ECM) network. However, hydrogels are generally not amenable to protein adhesion and patterning. Moreover, muscle structures and their underlying ECM are highly anisotropic, and it is imperative that in vitro models recapitulate the structural anisotropy in reconstructed tissues for in vivo relevance due to the tight coupling between sturcture and function in these systems. Two techniques to create chemical and structural heterogeneities within soft alginate substrates are presented and employed to engineer anisotropic muscle monolayers: i) microcontact printing lines of extracellular matrix proteins on flat alginate substrates to guide cellular processes with chemical cues and ii) micromolding of alginate surface into grooves and ridges to guide cellular processes with topographical cues. Neonatal rat ventricular myocytes as well as human umbilical artery vascular smooth muscle cells successfully attach to both these micropatterned substrates leading to subsequent formation of anisotropic striated and smooth muscle tissues. Muscular thin film cantilevers cut from these constructs are then employed for functional characterization of engineered muscular tissues. Thus, micropatterned alginate is an ideal substrate for in vitro models of muscle tissue because it facilitates recapitulation of the anisotropic architecture of muscle, mimics the mechanical properties of the ECM microenvironment, and is amenable to evaluation of functional contractile properties.  相似文献   

14.
Microfluidic systems enable rapid diagnosis of diseases, biological analysis, drug screening, and high‐precision materials synthesis. In spite of these remarkable abilities, conventional microfluidic systems are microfabricated monolithically on a single platform and their operations rely on bulky expensive external equipment. This restricts their applications outside of research laboratories and prevents development and assembly of truly versatile and complex systems. Here, novel magnetorheological elastomer (MRE) microactuators are presented including pumps and mixers using an innovative actuation mechanism without the need of delicate elements such as thin membranes. Modularized elements are realized using such actuators, which can be easily integrated and actuated using a single self‐contained driving unit to create a modular, miniaturized, and robust platform. The performance of the microactuators is investigated via a series of experiments and a proof‐of‐concept modular system is developed to demonstrate the viability of the platform for self‐contained applications. The presented MRE microactuators are small size, simple, and efficient, offering a great potential to significantly advance the current research on complex microfluidic systems.  相似文献   

15.
Incomplete regeneration and restoration of function in damaged nerves is a major clinical challenge. In this regard, stem cells hold much promise in nerve tissue engineering, with advantages such as prevention of scar‐tissue ingrowth and guidance of axonal regrowth. Engineering 3D and patterned microenvironments using biomaterials with chemical and mechanical characteristics close to those of normal nervous tissue has enabled new approaches for guided differentiation of various stem cells toward neural cells and possible treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Differentiation of stem cells in a neurogenic lineage is largely affected by signals from the surrounding microenvironment (niche). The stem cell niche refers to a specific microenvironment around the stem cells, which provides specific biochemical (soluble factors) and biophysical signals (topography, electrical, and mechanical). This specified niche regulates the stem cells' behavior and fate. While the role of chemical cues in neural differentiation is well appreciated, recently, the cues presented by the physical microenvironment are increasingly documented to be important regulators of nerve cell differentiation. The single and synergistic effects of surface topography and electrical signals on neural differentiation of stem cells are reviewed.  相似文献   

16.
Nanomaterials including gold nanoparticles, polymeric nanoparticles, and magnetic iron oxide nanoparticles are utilized in tissue engineering for imaging, drug delivery, and maturation. Prolonged presence of these nanomaterials within biological systems remains a concern due to potential adverse affects on cell viability and phenotype. Accelerating nanomaterial degradation within biological systems is expected to reduce the potential adverse effects in the tissue. Similar to biodegradable polymeric scaffolds, the ideal nanomaterial remains stable for sufficient time to accomplish its desired task, and then rapidly degrades once that task is completed. Here, surface modifications are reported to accelerate iron oxide MNP degradation mediated by polymer encapsulation, in which iodegradable coatings composed of FDA approved polymers with different degradation rates are used: poly(lactide) (PLA) or copolymer poly(lactide‐co‐glycolide) (PLGA). Results demonstrate that degradation of MNPs can be controlled by varying the content and composition of the polymeric nanoparticles used for MNP encapsulation (PolyMNPs). Incorporated into cellular spheroids, PolyMNPs maintain a high viability compared to non‐coated MNPs, and are also useful in magnetically patterning cellular spheroids into fused tissues for tissue engineering applications. Accelerated degradation compared to non‐coated MNPs makes PolyMNPs a viable alternative for removing nanomaterials from tissues after accomplishing their desired role.  相似文献   

17.
Sustained release of proteins from aligned polymeric fibers holds great potential in tissue-engineering applications. These protein-polymer composite fibers possess high surface-area-to-volume ratios for cell attachment, and can provide biochemical and topographic cues to enhance tissue regeneration. Aligned biodegradable polymeric fibers that encapsulate human glial cell-derived neurotrophic factor (GDNF, 0.13 wt%) were fabricated via electrospinning a copolymer of caprolactone and ethyl ethylene phosphate (PCLEEP) with GDNF. The protein was randomly dispersed throughout the polymer matrix in aggregate form, and released in a sustained manner for up to two months. The efficacy of these composite fibers was tested in a rat model for peripheral nerve-injury treatment. Rats were divided into four groups, receiving either empty PCLEEP tubes (control); tubes with plain PCLEEP electrospun fibers aligned longitudinally (EF-L) or circumferentially (EF-C); or tubes with aligned GDNF-PCLEEP fibers (EF-L-GDNF). After three months, bridging of a 15 mm critical defect gap by the regenerated nerve was observed in all the rats that received nerve conduits with electrospun fibers, as opposed to 50% in the control group. Electrophysiological recovery was seen in 20%, 33%, and 44% of the rats in the EF-C, EF-L, and EF-L-GDNF groups respectively, whilst none was observed in the controls. This study has demonstrated that, without further modification, plain electrospun fibers can help in peripheral nerve regeneration; however, the synergistic effect of an encapsulated growth factor facilitated a more significant recovery. This study also demonstrated the novel use of electrospinning to incorporate biochemical and topographical cues into a single implant for in vivo tissue-engineering applications.  相似文献   

18.
Cell response to exogenous cues is the result of a complex integration of multiple biochemical/biophysical signals, which might occur simultaneously and might be characterized by specific spatial and temporal patterns. Among these signals, surface topography plays an important role in affecting cell functions and fate. However, the current understanding of the interplay between cells and topography relies on static environment. Here the intrinsic light‐responsive properties of azopolymers and the versatility of laser‐based confocal microscope technique is exploited, aiming to induce spatio‐temporal dynamic topographic changes in situ during cell culture. Diverse patterns can be designed on cell‐populated azopolymer films with high control on time, space, and on‐off signal modification. The technique proposed in this study enables the development of synthetic platforms that finely control cell orientation and migration both in time and space. The results may pave the way to unravel complex processes involved in cell‐topography interactions, thus allowing to define the spatio‐temporal features that most effectively influence cell functions.  相似文献   

19.
The retrieval of plant biophysical and biochemical properties from high spectral resolution data represents an active area of research within the remote sensing field. Scientific studies in this area are usually supported by computational simulations of light attenuation processes within foliar tissues. In heterogeneous organic materials, like plant leaves, sieve and detour effects can affect these processes and ultimately change the light gradients within these tissues and their spectral signatures. Although these effects have been extensively examined for applications involving the interactions of visible radiation with plant leaves, little is known about their role in the infrared domain. In this paper, we describe the procedural basis for their incorporation in the modeling of infrared-radiation transport (in the range of 750-2500 nm) within plant leaves. We also assess their impact on the predictability of simulation solutions relating the directionality of the incident radiation and the internal arrangement of the tissues to changes on foliar spectral signatures in this domain. Our investigation is grounded by the observations involving the modeled results and quantitative and qualitative data reported in the literature.  相似文献   

20.
A fundamental relationship exists between diffusion characteristics within semiconductors and Nernstian equilibrium in biological systems. In a transistor operating in weak inversion the potential difference between terminals governs electron concentration in an exponential way according to the Boltzmann distribution of charged particles while in a biochemical cell the potential difference across a membrane is governed by ionic concentration in a logarithmic way according to the Nernst equation. These two nonlinear physical phenomena form an interaction that potentially leads to linearisation and subsequent modelling of or interaction with biological systems by integrated semiconductor devices. To demonstrate the authors' hypothesis a silicon transistor-based biosensor is considered. This natural bridge between biochemistry and semiconductor silicon chips will enable the potential mass production of portable biochemical devices for the consumer market  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号