首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-temperature heating is ubiquitously utilized in material synthesis and manufacturing, which often features a rapid production rate due to the significantly improved kinetics. However, current technologies generally provide overall and steady-state heating, thereby limiting their applications in micro/nano-manufacturing that require selective patterning and swift heating. Herein, significantly improved control over small-scale heating is reported by utilizing 3D printed reduced-graphene-oxide (RGO) probe triggered by electrical Joule heating, which enables precise heating with high spatial (sub-millimeter scale) and temporal (milliseconds) resolutions. The block copolymer-modified aqueous-based RGO ink enabled 3D printing of high-precision structures, and a bio-inspired cellular microstructure is constructed to achieve control of the electrical conductivity and maximize structure robustness (benefit for efficient heating and operability). In particular, a thermal probe featuring a microscale tip with excellent heating capabilities (up to ≈3000 K, ultra-fast ramping rate of ≈105 K s−1, and durations in milliseconds) is fabricated. This thermal probe is ideal for surface patterning, as it is demonstrated for the selective synthesis of patterned metal (i.e., platinum and silver) nanoparticles on nano-carbon substrates, which is not possible by traditional steady-state heating. The material construction and heating strategy can be readily extended to a range of applications requiring precise control on high-temperature heating.  相似文献   

2.
An ideal craniofacial bone repair graft shall not only focus on the repair ability but also the regeneration of natural architecture with occlusal loads-related function restoration. However, such functional bone tissue engineering scaffold has rarely been reported. Herein, a hierarchical 3D graft is proposed for rebuilding craniofacial bone with both natural structure and healthy biofunction reconstruction. Inspired by the bone healing process, an organic–inorganic nanoink with ultrasmall calcium phosphate oligomers and bone morphogenetic protein-2 incorporated is developed for spatiotemporal guidance of new bone. Based on such homogeneous nanoink, a biomimetic graft, including a cortical layer containing Haversian system, and a cancellous layer featured with triply periodic minimum surface macrostructures, is fabricated via projection-based 3D printing method, and the layers are loaded with distinct concentrations of bioactive factors for regenerating new bone with gradient density. The graft exhibits excellent osteogenic and angiogenic potential in vitro, and accelerates revascularization and reconstructs neo-bone with original morphology in vivo. Benefiting from such natural architecture, loading force is widely transferred with reduced stress concentration around the inserted dental implant. Taken from native physiochemical and structural cues, this wstudy provides a novel strategy for functional tissue engineering through designing function-oriented biomaterials.  相似文献   

3.
2D nanomaterials are very attractive for photoelectrochemical applications due to their ultra-thin structure, excellent physicochemical properties of large surface-area-to-volume ratios, and the resulting abundant active sites and high charge transport capacity. However, the application of commonly used 2D nanomaterials with disordered-stacking is always limited by high photoelectrode tortuosity, few surface-active sites, and low mass transfer efficiency. Herein, inspired by wood structures, a vertical 3D printing strategy is developed to rapidly build vertically aligned and hierarchically porous graphitic carbon nitride/carbon nanotube (g-C3N4/CNT) arrays by using lignin as a binder for efficient photoelectrochemical hydrogen evolution. Arising from the directional electron transport and multiple light scattering in the out-of-plane aligned and porous architecture, the resulting g-C3N4/CNT arrays display an outstanding hydrogen evolution performance, with the hydrogen yield up to 4.36 µmol (cm−2 h−1) at a bias of −0.5 V versus RHE, 12.7 and 41.6 times higher than traditional thick g-C3N4/CNT and g-C3N4 films, respectively. Moreover, this 3D printed structure can overcome the agglomeration problem of the commonly used g-C3N4 with powder configuration and shows desirable recyclability and stability. This facile and scalable vertical 3D printing strategy will open a new avenue to highly enhance the photoelectrochemical performance of 2D nanomaterials for sustainably production of clean energy.  相似文献   

4.
A soft piezoresistive sensor with its unique characteristics, such as human skin, light weight, and multiple functions, yields a variety of possible practical applications to skin‐attachable electronics, human–machine interfaces, and electronic skins. However, conventional filler‐matrix piezoresistive sensors often suffer from unsatisfactory sensitivity or insufficient measurement range, as well as significant cross‐correlation between out‐of‐plane pressure and in‐plane extension. Here, a stretchable piezoresistive sensor (SPS) is realized by combining a hierarchically porous sensing element with a multimodulus device architecture via a full 3D printing process. As a result, the sensor exhibits high sensitivity (5.54 kPa?1), large measurement range (from 10 Pa to 800 kPa), limited cross‐correlation, and excellent durability. Meanwhile, benefiting from the porous structure and mechanical mismatch design, which efficiently distributes the stress away from the sensing element, the device experiences only 7% resistance change at 50% stretching. This approach is employed to rapidly program and readily manufacture stylish, all‐in‐one, functional devices for various applications, demonstrating that the technique is promising for customized stretchable electronics.  相似文献   

5.
A 3D printing methodology for the design, optimization, and fabrication of a custom nerve repair technology for the regeneration of complex peripheral nerve injuries containing bifurcating sensory and motor nerve pathways is introduced. The custom scaffolds are deterministically fabricated via a microextrusion printing principle using 3D models, which are reverse engineered from patient anatomies by 3D scanning. The bifurcating pathways are augmented with 3D printed biomimetic physical cues (microgrooves) and path‐specific biochemical cues (spatially controlled multicomponent gradients). In vitro studies reveal that 3D printed physical and biochemical cues provide axonal guidance and chemotractant/chemokinetic functionality. In vivo studies examining the regeneration of bifurcated injuries across a 10 mm complex nerve gap in rats showed that the 3D printed scaffolds achieved successful regeneration of complex nerve injuries, resulting in enhanced functional return of the regenerated nerve. This approach suggests the potential of 3D printing toward advancing tissue regeneration in terms of: (1) the customization of scaffold geometries to match inherent tissue anatomies; (2) the integration of biomanufacturing approaches with computational modeling for design, analysis, and optimization; and (3) the enhancement of device properties with spatially controlled physical and biochemical functionalities, all enabled by the same 3D printing process.  相似文献   

6.
7.
The manufacture of tailored carbon-based adsorbent structures with exceptionally low-pressure drops and improved kinetics using stereolithographic 3D printing is presented. Adsorbent structures are printed from commercial resins with square, circular, and hexagonal cross-sectional microchannels. These structures can reduce energy use by 50–95% compared to conventional carbon-packed beds. The activated 3D printed carbon achieves Brunauer–Emmett–Teller surface areas over 1000 m2 g−1 and shows outstanding butane adsorption capacities, over twice the capacity of a commercial carbon and a comparable capacity to phenolic-based carbons. The structures also show excellent uptakes of cyclohexane, up to 0.62 g g−1 in a saturated feed. The introduction of complex axial geometries including spirals and chevrons enable superior adsorption kinetics and premature breakthrough of contaminants at high gas flow rates. These results demonstrate the success of intelligent manufacturing of low-pressure drop, high-capacity micro-structured adsorbents, allowing for the development of gas separation technologies for applications such as greenhouse gas removal and respiratory protection.  相似文献   

8.
Additive manufacturing strives to combine any combination of materials into 3D functional structures and devices, ultimately opening up the possibility of 3D printed machines. It remains difficult to actuate such devices, thus limiting the scope of 3D printed machines to passive devices or necessitating the incorporation of external actuators that are manufactured differently. Here, 3D printed hybrid thermoplast/conducter bilayers are explored, which can be actuated by differential heating caused by externally controllable currents flowing through their conducting faces. The functionality of such actuators is uncovered and it is shown that they allow to 3D print, in one pass, simple flexible robotic structures that propel forward under step‐wise applied voltages. Moreover, exploiting the thermoplasticity of the nonconducting plastic parts at elevated temperatures, it is shown that how strong driving leads to irreversible deformations—a form of 4D printing—which also enlarges the range of linear response of the actuators. Finally, it is shown that how to leverage such thermoplastic relaxations to accumulate plastic deformations and obtain very large deformations by alternatively driving both layers of a bilayer; this is called ratcheting. The strategy is scalable and widely applicable, and opens up a new approach to reversible actuation and irreversible 4D printing of arbitrary structures and machines.  相似文献   

9.
太赫兹3D打印透镜综述   总被引:1,自引:0,他引:1       下载免费PDF全文
太赫兹波由于其独特的电磁特性可应用于超高速率无线通信、生物化学物质检测以及高分辨率成像等领域。但由于太赫兹波的物理波长小,传统适用于低频的加工工艺难以满足其加工精度的要求;而微纳米加工工艺又具有加工复杂、成本高等缺点。3D打印技术的发展为太赫兹器件的加工提供了新的选择和更多的设计灵活度。文章介绍了香港城市大学太赫兹与毫米波国家重点实验室在3D打印太赫兹透镜方面的最新研究动态和实验研究新成果,包括基于3D打印的太赫兹高增益圆极化透镜、近场聚焦圆极化透镜、贝塞尔波束生成透镜的设计,高精度3D打印方法的探索以及太赫兹天线测试方法等。太赫兹3D打印透镜天线具有低成本、低损耗、能快速成型等特点,可应用于不同的太赫兹场景中。  相似文献   

10.
Patients with diabetes mellitus (DM) suffer from a high risk of fractures and poor bone healing ability. Surprisingly, no effective therapy is available to treat diabetic bone defect in clinic. Here, a 3D printed enzyme-functionalized scaffold with multiple bioactivities including osteogenesis, angiogenesis, and anti-inflammation in diabetic conditions is proposed. The as-prepared multifunctional scaffold is constituted with alginate, glucose oxidase (GOx), and catalase-assisted biomineralized calcium phosphate nanosheets (CaP@CAT NSs). The GOx inside scaffolds can alleviate the hyperglycemia environment by catalyzing glucose and oxygen into gluconic acid and hydrogen peroxide (H2O2). Both the generated H2O2 as well as the overproduced H2O2 in DM can be scavenged by CaP@CAT NSs, while the initiated hypoxic microenvironment stimulates neovascularization. Moreover, the incorporation of CaP@CAT NSs not only enhance the mechanical property of the scaffolds, but also facilitate bone regeneration by the degraded Ca2+ and PO43− ions. The remarkable in vitro and in vivo outcomes demonstrate that enzymes functionalized scaffolds can be an effective strategy for enhancing bone tissue regeneration in diabetic conditions, underpinning the potential of multifunctional scaffolds for diabetic bone regeneration.  相似文献   

11.
The use of conductive carbon materials in 3D-printing is attracting growing academic and industrial attention in electrochemical energy storage due to the high customization and on-demand capabilities of the additive manufacturing. However, typical polymers used in conductive filaments for 3D printing show high resistivity and low compatibility with electrochemical energy applications. Removal of insulating thermoplastics in as-printed materials is a common post-printing strategy, however, excessive loss of thermoplastics can weaken the structural integrity. This work reports a two-step surface engineering methodology for fabrication of 3D-printed carbon materials for electrochemical applications, incorporating conductive poly(ortho-phenylenediamine) (PoPD) via electrodeposition. A conductive PoPD effectively enhances the electrochemical activities of 3D-printed frameworks. When PoPD-refilled frameworks casted with LiMn2O4 (LMO) composite materials used as battery cathode, it delivers a capacity of 69.1 mAh g−1 at a current density of 0.036 mA cm−2 ( ≈ 1.2 C discharge rate) and good cyclability with a retained capacity of 84.4% after 200 cycles at 0.36 mA cm−2. This work provides a pathway for developing electroactive 3D-printed electrodes particularly with cost-efficient low-dimensional carbon materials for aqueous rechargeable Li-ion batteries.  相似文献   

12.
13.
Plasmonic nanostructures that generate hot carriers and induce catalytic chemical transformations are ideal candidates for solar energy utilization. However, the existing nanostructures require multistep synthesis procedures and generate fewer hot carriers due to their narrow resonance region and limited hotspots, restricting their usage in plasmonic catalysis. Inspired by the light-harvesting behavior of the trees, the current work reports a one-step fabrication strategy via electrodeposition for direct anisotropic growth of the 3D gold nanotrees with tunable size, branches, and height. The as-synthesized nanostructures with broadband light absorption and plentiful hotspots can significantly foster hot carrier generation. The improved hot electron generation of 3D gold nanotrees is confirmed by in situ surface-enhanced Raman spectroscopy  for the dimerization reaction of 4-nitrothiophenol. The energetic hot holes generated by the 3D gold nanotrees facilitate water oxidation and exhibit 18.6 times higher catalytic efficiency than Au film under 625 nm. Meanwhile, the photoelectrochemical catalysis of 3D gold nanotrees shows better performance compared with conventional Au nanospheres. This work opens up a promising avenue for fundamental studies of plasmonic catalysis via a wide variety of 3D gold nanotrees.  相似文献   

14.
Thermal camouflage utilizes the manipulation of heat fluxes to conceal an arbitrary object in various environments from being detected via thermography. In the past decade, the field of thermal metamaterials and the technique of 3D printing have been rapidly developed, which makes nonintuitive heat flux manipulation feasible. However, when thermal metamaterials are applied to the thermal camouflaging, their conductivities are dependent on the properties of background, leading to the damage of background integrality. Moreover, previous thermal camouflaging schemes have mostly worked in the 2D regime, largely restricting their functional angles and application scenarios, especially in complex environments. Here, wide‐angle radiative thermal camouflaging is realized by using a 3D‐printed meta‐helmet of extremely anisotropic thermal conductivities. Based on 3D coordinate transformation, this meta‐helmet directly maps temperature distributions from the background to the metamaterial surface without damaging background integrity. The non‐invasive device is efficient in wide‐angle thermal camouflage by rendering the same emissivity to the background medium and can self‐adjust to various even unknown background thermal fields, which is demonstrated in numerical simulations and experiments. This work opens a door to the 3D transformation‐thermotics‐based devices for versatile practical applications in thermal infrared stealth of macro‐sized objects and others.  相似文献   

15.
3D capacitor design parameters have been evaluated in order to improve the capacitance per unit die area. The geometrical issues as well as the process manufacturing issues are both investigated. The main manufacturing issues have been experimentally tested: etching, deposition and warpage of the wafer. An improvement has been observed for the robustness of 3D structures and the density of the capacitor has been increased for several proposed 3D pattern. All capacitors tested in this paper are realised with PICS technology.  相似文献   

16.
3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.  相似文献   

17.
Plasmonic biosensors have demonstrated superior performance in detecting various biomolecules with high sensitivity through simple assays. Scaled‐up, reproducible chip production with a high density of hotspots in a large area has been technically challenging, limiting the commercialization and clinical translation of these biosensors. A new fabrication method for 3D plasmonic nanostructures with a high density, large volume of hotspots and therefore inherently improved detection capabilities is developed. Specifically, Au nanoparticle‐spiked Au nanopillar arrays are prepared by utilizing enhanced surface diffusion of adsorbed Au atoms on a slippery Au nanopillar arrays through a simple vacuum process. This process enables the direct formation of a high density of spherical Au nanoparticles on the 1 nm‐thick dielectric coated Au nanopillar arrays without high‐temperature annealing, which results in multiple plasmonic coupling, and thereby large effective volume of hotspots in 3D spaces. The plasmonic nanostructures show signal enhancements over 8.3 × 108‐fold for surface‐enhanced Raman spectroscopy and over 2.7 × 102‐fold for plasmon‐enhanced fluorescence. The 3D plasmonic chip is used to detect avian influenza‐associated antibodies at 100 times higher sensitivity compared with unstructured Au substrates for plasmon‐enhanced fluorescence detection. Such a simple and scalable fabrication of highly sensitive 3D plasmonic nanostructures provides new opportunities to broaden plasmon‐enhanced sensing applications.  相似文献   

18.
19.
3D printed materials are of great relevance to produce medicinal scaffolds and specialized foods. An approach to forming 3D printable materials is to use jammed oil droplets. Jammed oil droplets are highly viscous and can be extruded through the nozzle of a 3D printer, while after chemical cross-linking they acquire a self-standing ability. However, the molecules currently used to stabilize and cross-link the oil droplets have questionable biocompatibility. Therefore, this study aims to produce a 3D printable jammed emulsion using pea proteins. This jammed oil-in-water emulsion is remarkably stable and viscoelastic enough to be extruded through the printer nozzle. Adhesive pea protein particles formed by pH adjustment act as physical cross-links between the oil droplets, forming a scaffold with elastoplastic rheological properties that flows above critical stress while, without any additional treatment, exhibits the required self-standing properties for 3D printing. By understanding the properties of pea proteins and their behavior in bulk and on interfaces, pea protein-based 3D printable material is created for the first time.  相似文献   

20.
2D Nanomaterials, with unique structural and electronic features, have shown enormous potential toward photocatalysis fields. However, the photocatalytic behavior of pristine 2D photocatalysts are still unsatisfactory, and far below the requirements of practical applications. In this regard, surface defect engineering can serve as an effective means to tune photoelectric parameters of 2D photocatalysts through tailoring the local surface microstructure, electronic structure, and carrier concentration. In this review, recent progress in the design of surface defects with the classified anion vacancy, cation vacancy, vacancy associates, pits, distortions, and disorder on 2D photocatalysts to boost the photocatalytic performance is summarized. The strategies for controlling defects formation and technique to distinguish various surface defects are presented. The crucial roles of surface defects for photocatalysis performance optimization are proposed and advancement of defective 2D photocatalysts toward versatile applications such as water oxidation, hydrogen production, CO2 reduction, nitrogen fixation, organic synthesis, and pollutants removal are discussed. Surface defect modulated 2D photocatalysts thus represent a powerful configuration for further development toward photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号