首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
针对齿轮箱在实际运行过程中存在的轴系变形问题,提出了一种二级齿轮减速器在多源时变激励作用下振动噪声的计算方法。综合考虑齿轮、轴承时变刚度以及误差激励的影响,并引入二级齿轮相位关系,采用有限元法建立了计入轴柔性的二级直齿轮-轴-轴承系统耦合动力学模型。通过Newmark时域积分法求解系统动力学方程,得到各轴承动载荷,并分析了传动系统的固有特性及轴的静变形特征。采用有限元法对齿轮箱进行模态分析,提取箱体各阶固有频率与振型。以轴承频域动载荷为齿轮箱激励,利用模态叠加法计算得到齿轮箱的振动响应,并采用声学边界元法对齿轮箱的辐射噪声进行了计算。分析了轴柔性和转速对轴承动载荷与箱体辐射噪声的影响。仿真结果表明:计入轴柔性后,轴承动载荷波动幅值降低,激励频率成分也随之减少;在低频段200~900Hz与高频段1 800Hz附近,箱体的主要共振模式发生改变,顶部场点噪声有所降低;随着转速的升高,激起了传动系统轴系弯曲振动模式,并引起传动系统振动幅值增大,且齿轮箱顶部场点噪声明显大于两侧场点噪声。研究结果可为减速器的减振降噪设计提供理论参考。  相似文献   

2.
采用弹簧单元模拟轮齿啮合刚度,杆单元模拟箱体间的联结螺栓,弹簧阻尼单元模拟滑动轴承和滚动轴承,建立由齿轮、传动轴、轴承和箱体等组成的GWC6066船用齿轮箱动态有限元分析模型及声学边界元模型;分析了齿轮箱在内部动态激励下的动态响应,预估了齿轮箱的振动烈度、结构噪声及空气噪声,并对齿轮箱进行实验模态分析及振动噪声测试,与仿真结果对比分析,二者吻合良好。  相似文献   

3.
船用齿轮箱多体动力学仿真及声振耦合分析   总被引:1,自引:0,他引:1  
基于多体系统动力学理论,综合考虑齿轮副时变啮合刚度、齿侧间隙、轴承支撑刚度等内部激励以及螺旋桨外部激励,建立了含传动系统及结构系统的船用齿轮装置多刚体系统动力学模型,计算了齿轮副动态啮合力及轴承支反力;对齿轮箱及支座进行柔性化处理,形成多柔体系统动力学模型,采用模态叠加法计算了箱体表面的动态响应.而后以多体动力学分析所得的轴承支反力频域历程为边界条件,建立了箱体声振强耦合分析模型,预估了齿轮箱表面声压及外声场辐射噪声.结果表明,齿轮副动态啮合力、轴承支反力以及箱体动态响应频域曲线的峰值均出现在齿轮副的啮合频率及其倍频处;仿真所得的箱体振动加速度及外声场辐射噪声与齿轮箱振动噪声试验台架实测结果吻合良好.  相似文献   

4.
大功率船用齿轮箱结构优化   总被引:3,自引:0,他引:3  
综合考虑齿轮啮合力及箱体重力作用,采用有限元法建立大功率船用齿轮箱的有限元静力学模型,分析计算4种工况下齿轮箱的承载能力,并对原齿轮箱的强度和结构刚度进行分析评价.基于等强度原则,将优化设计与可靠性设计理论相结合,建立齿轮箱优化模型.在满足齿轮箱结构安全的条件下,对齿轮箱进行优化设计.优化后的齿轮箱重量减轻1.06 t,并且强度分布趋向均匀,结构变得更加合理,具有一定的理论和工程实用价值.  相似文献   

5.
本文以某齿轮箱为研究对象,应用MASTA软件根据动力学理论完成对齿轮传动系统的建模,得到轴承处动态力并以此作为之后箱体的输入载荷,综合运用Pro/E、Hypermesh与Ansys软件建立齿轮箱箱体有限元模型,计算齿轮箱模态并调入Virtual Lab软件中基于模态叠加法最终得到固定转速下齿轮箱各点振动响应,经验证,与振动试验测量值相吻合。本文通过多软件联合计算仿真成功求解齿轮箱箱体振动响应,有助于预测整体系统振动噪声,为齿轮箱振动控制提供了理论依据。  相似文献   

6.
该文运用有限元法对某通用小型汽油机箱体进行了结构强度与刚度分析,结果表明右箱体主轴承位置最大变形量过大,刚度较差。为此对右箱体主轴承区域进行拓扑优化。优化方式为:增加右箱体主轴承处加强筋数量、增加壁面厚度以及在壁面上添加加强条。通过计算表明,该优化方式能使箱体的最大应力与应变大大下降,使其强度刚度有了较大提升,箱体的结构更趋合理。  相似文献   

7.
随机风载荷和塔架的柔性支承容易使齿轮箱低速轴轴承受到复杂交变载荷,导致轴承疲劳损坏。为研究在柔性支承和变载荷下风力机齿轮箱低速轴轴承的疲劳寿命,文章建立柔性支承下风力机齿轮箱动力学模型,得出低速轴轴承动态载荷,并对轴承进行静力学分析。最后根据准静态学分析法,得到轴承应力谱,并基于Miner线性累积损伤法则对低速轴轴承的疲劳寿命进行估算。分析结果表明,滚动体与内圈接触区域的外侧倒角处接触应力最大,该最大接触应力结果与Hertz理论计算出的应力幅值结果较为一致;考虑塔架柔性支承下得到风力机低速轴轴承疲劳寿命小于其设计寿命,因此在风力机低速轴轴承设计时必须考虑塔架的柔性支承。  相似文献   

8.
风力发电机运行环境恶劣,受到风的随机性和不稳定性的影响,塔架-机舱-叶轮存在着强烈的耦合作用,使得齿轮传动系统中的齿轮啮合面承受着不稳定的变载荷和极端载荷,进而使滚动轴承的受力也变得复杂。论文以新安装的大型风力机齿轮箱轴-滚动轴承系统为例,研究基于柔性支承下风力发电机齿轮箱轴承由于受力变形造成的工作游隙与轴承复杂受力的关系,对我国国内1.5 MW主流风力机行星齿轮系统实例分析,采用了包括经验计算值在内的四组阻尼值,得到了100 s时序随机风载下的齿轮箱低速轴轴承的不同工作游隙值。结果表明:轴承阻尼数值的不同,对于在复杂工况下的轴承受力有较大影响,同时也间接影响了轴承工作游隙的大小。在随机风载下,工作游隙偶尔有较大波动,但基本处于一个稳定的状态。为以后研究风力机轴承的磨损和振动监测提供了一定的理论计算方法和数据。  相似文献   

9.
该文以SCARA型手臂作为研究对象,构建轴承受力计算模型,利用赫兹接触理论计算负载引起的轴承变形量.将结果与手臂有限元分析结果叠加,最终求出机械手手臂柔顺度.通过实验值和理论计算值对比,计算值误差仅为3%,计算方法满足机械手手臂柔顺度产品开发需要.  相似文献   

10.
风机的齿轮箱和发电机分别通过钢板弹簧和弹性橡胶与具有一定刚度的底座相连,具有"双弹性支撑"的结构特点.该特点导致风机运行时固有地存在齿轮箱输出轴和发电机轴之间的轴不对中,使得齿轮箱振动信号出现严重的高阶啮合频率和平稳调制现象.文中通过对1000多组现场测试数据的详细分析,得出齿轮箱、主轴承、发电机轴承和辅助设备的振动特性,验证了"双弹性支撑"对齿轮箱频率特性的影响;鉴于风机自身的结构特点和测试分析结果,分析了传动系统故障诊断的难点和可能的解决途径.  相似文献   

11.
针对风电增速齿轮箱温度异常现象,基于Block闪温理论与Hertz接触理论,提出一种考虑随机风载作用下齿面接触温度的计算方法.以该方法为理论基础,根据行星轮系耦合建模理论,建立风电增速齿轮箱动力学性能计算模型.模型不仅揭示了随机风载、齿面接触温度及齿廓热变形之间相互影响的函数关系,还展现了随机风载、齿面接触温度等非线性...  相似文献   

12.
大功率船用齿轮箱振动与结构噪声试验   总被引:1,自引:0,他引:1  
由于船用齿轮箱的特殊使用工况,其性能要求远远高于其他齿轮箱。分析了某大功率船用齿轮箱的结构和传动原理,并在大功率齿轮传动试验台上进行试验测试。通过对振动信号FFT分析,发现其振动主要由输入级、中间传动级、输出级的啮合频率及其倍频引起。该大功率船用齿轮箱振动烈度达到4.47mm/s,最大结构噪声131.27dB,对应输出级啮合频率329Hz处。  相似文献   

13.
针对一级行星两级平行轴风电齿轮传动系统,综合考虑齿轮时变啮合刚度、啮合阻尼、传递误差等因素,建立31个自由度的弯扭轴耦合集中参数动力学模型,采用变步长Runge-Kutta法对系统动力学微分方程进行求解,得出齿轮传动系统各级传动误差;借助软件建立风电齿轮箱刚柔耦合动力学模型,并导入传动误差,采用模态叠加法求得齿轮箱轴承支反力,并将其作为声振耦合模型的边界条件,采用声学有限元法对风电齿轮箱进行振动噪声预估,并与试验结果对比分析,两者吻合良好。  相似文献   

14.
基于集中参数振动理论,建立采用中心轮浮动的封闭差动行星传动系统动力学模型.考虑支撑的弹性变形、啮合齿轮副的时变啮合刚度激励和齿轮误差激励.计算系统两级中心轮的浮动量,获得齿轮误差、支撑刚度与系统两级中心轮浮动量间的关系曲线,分析误差、支撑刚度对系统两级中心轮浮动量的影响.研究结果表明:系统两级中心轮浮动量随误差增大而增大;差动级中心轮的浮动量远比封闭级的浮动量大;差动级齿频误差引起的中心轮浮动量远大于偏心误差引起的浮动量,差动级中心轮浮动量对齿频误差比偏心误差敏感;可以适度减小系统两级中心轮的支撑刚度来提高两级中心轮的浮动能力;为实现差动级中心轮较高的浮动能力,差动级中心轮应采用较小的支撑刚度.  相似文献   

15.
以MAAG型5 MW风力发电用增速箱为研究对象,根据无摩擦条件下的传动比和力矩分配公式,分析齿轮啮合损失、轴承损失和搅油损失,推导出有摩擦条件下的效率公式,并以此为依据在5 MW的输入功率下,分别对采用三行星轮、四行星轮、五行星轮及混合行星轮的结构形式进行了配齿。以增速箱效率为主优化目标,以重量为辅优化目标,进行了配齿优化。对优化后效率排在前列的行星轮结构,进行齿轮模数的计算,并根据强度条件进行了校核,提取了满足所有条件的最大效率的行星轮结构。使用Matlab软件在增速箱的总传动比不变的前提下,以效率最优为目标,对齿轮模数及效率进行了优化,并对优化后的结构进行了校核和检验。  相似文献   

16.
以单级人字齿轮减速器为研究对象,综合考虑齿轮传动过程中的误差激励、啮合刚度激励建立动力学模型。通过傅里叶级数法求解,得到了轴承动载荷时域历程与频谱。以轴承动载荷为激励,采用FEM/BEM方法计算了减速器辐射噪声,得到齿轮箱声场各场点的噪声谱。通过对箱体结构进行适当改进,计算了不同箱体结构下的辐射噪声。研究并讨论了箱体结构对辐射噪声的影响,得到了肋板对箱体辐射噪声的影响规律,为减速器的减振降噪设计提供了理论依据。  相似文献   

17.
风电增速箱结合部刚度分析及振动噪声预估   总被引:3,自引:3,他引:0  
为了研究风电增速箱的振动特性和辐射噪声,基于轴承支承刚度及齿轮副啮合刚度分析,建立了风电增速箱轴系扭转振动模型,运用Matlab求解振动微分方程,得出轴系扭振频率及对应振型;综合考虑刚度激励、误差激励及冲击激励,建立了风电增速箱动力学有限元模型,仿真得出增速箱的动态响应。以箱体表面节点振动位移为边界条件,建立了增速箱声学边界元模型,采用直接边界元法求解得到箱体表面声压及场点的辐射噪声。结果表明,风电增速箱扭振频率与激励频率及其倍频相差较大,不会出现共振现象;增速箱结构噪声和辐射噪声的峰值主要出现在高速级齿轮啮合频率的二倍频附近。  相似文献   

18.
齿轮箱耦合系统三维接触非线性动态特性仿真   总被引:1,自引:0,他引:1  
针对现有齿轮传动系统动力学模型和研究方法的不足,提出了基于完全弹性体的齿轮传动系统动态分析方法.以某型船用齿轮箱传动系统为研究对象,基于显式动力学有限元法,考虑部件之间的耦合作用建立了箱体-轴承-斜齿轮副三维动态接触非线性模型.对整体齿轮箱传动系统进行了动态仿真,得到了关键部件的动力学特性,并与非耦合模型动态性能仿真结果进行比较.结果表明:滚动体与齿面应力呈不均匀分布,部件间的耦合作用加剧了齿轮箱的冲击效应.最后采用赫兹线接触理论进行了验证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号