首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Styrene and its presumed metabolite, styrene oxide, were tested for their mutagenic effect on a forward mutation system of yeast and of Chinese hamster cells, and on a gene-conversion system of yeast. Experiments with liver microsomal preparations and host-mediated assay with yeast were also carried out.Styrene oxide was mutagenic in all test systems. Styrene was mutagenic only in the host-mediated assay.  相似文献   

2.
Deoxyguanosine 3'-monophosphate (dGMP) was alkylated at the 7-position by dimethyl sulfate, ethylene oxide and styrene oxide in aqueous media and glacial acetic acid, respectively, to yield reasonable quantities of the products, which were purified by HPLC. dGMP adducts are needed as standards for the 32P-postlabelling assay. The stability of the adducts was studied at 37 degrees and neutral pH. The half-lives of disappearance of 7-methyl-dGMP and the beta-isomers of the styrene oxide adducts were about 250 min; 7-hydroxy-ethyl-dGMP and the alpha-isomers of the styrene oxide adducts had respective half-lives of 340 and 440 min. In all cases the main degradation product was the corresponding guanine adduct. The results demonstrate considerable lability of the 7-alkylation products of dGMP which has to be taken into consideration in devising the 32P-postlabelling assay.  相似文献   

3.
Excessive generation of nitric oxide (NO) has been implicated in the pathogenesis of several neurodegenerative disorders. Damage to the mitochondrial electron transport chain has also been implicated in these disorders. NO and its toxic metabolite peroxynitrite (ONOO(-)) can inhibit the mitochondrial respiratory chain, leading to energy failure and ultimately cell death. There appears to be a differential susceptibility of brain cell types to NO/ONOO(-), which may be influenced by factors including cellular antioxidant status and the ability to maintain energy requirements in the face of marked respiratory chain damage. Although formation of NO/ONOO(-) following cytokine exposure does not affect astrocyte survival, these molecules may diffuse out and cause mitochondrial damage to neighboring NO/ONOO(-)-sensitive cells such as neurons. Evidence suggests that NO/ONOO(-) causes release of neuronal glutamate, leading to glutamate-induced activation of neuronal NO synthase and generation of further damaging species. While neurons appear able to recover from short-term exposure to NO/ONOO(-), extending the period of exposure results in persistent damage to the respiratory chain and cell death ensues. These findings have important implications for acute infection vs. chronic neuroinflammatory disease states. The evidence for NO/ONOO(-)-mediated mitochondrial damage in neurodegenerative disorders is reviewed and potential therapeutic strategies are discussed.  相似文献   

4.
The possible carcinogenicity of styrene is believed to be related to the DNA-binding properties of styrene 7,8-oxide (SO). In order to compare the intrinsic reactivity of the different nucleophilic sites in DNA towards SO and to evaluate the candidates for human biomonitoring we have determined the second-order rate constants and stabilities of several SO-adducts in double-stranded DNA. These include alpha- and beta-isomers of N7-substituted and alphaN(2)-substituted guanines, alpha- and betaN3-substituted and alphaN(6)-substituted adenines as well as betaN3- and alphaN(4)-substituted cytosines. The highest rate constants were found for the spontaneously depurinating N7-guanines being ca. 3-15-fold higher than those for the stable adducts. When the relative proportions of different alkylation products were determined in course of time, after a single addition of SO, the labile N7-guanines and N3-adenines were the major products at early time points. After 144 h of incubation at 37 degrees C, alphaN(6)-SO-adenine and alphaN(2)-SO-guanine as well as betaN3-SO-uracil were the major adducts. Regarding human biomonitoring, the N7-substituted guanines should be one of the main targets because of the high reactivity of the N7-atom of guanine. However, in the case of chronic styrene exposures the chemically more stable DNA adducts may become important.  相似文献   

5.
Adducts were prepared by reacting styrene oxide with 2-deoxyguanosine 3'-monophosphate (dGMP). Four isomeric N-7-, two diastereomeric N2- and three isomeric O6-adduct were isolated and characterized. The adducts were used as substrates in the 32P-postlabeling reaction. No phosphorylation products were seen with the N-7-alkylation products. One diastereomeric N2-adduct was labeled with 20% efficiency and the second with a markedly lower efficiency. Two of the three O6-adducts were labeled with 5% and the third with 10% labeling efficiency. The results suggest that large N-7-dGMP adducts are very poor substrates of T4 polynucleotide kinase. The diastereomeric products are labeled at different efficiencies indicating stereoselectivity in the kinase reaction.  相似文献   

6.
Animal and human studies suggest a dopamine-mediated effect of styrene neurotoxicity. To date, mechanisms of cerebral membrane transport of neurotransmitter amines in the presence of styrene in relation to its neurotoxicity have not been addressed properly. So, the present study has examined to test the hypothesis that dopaminergic malfunction in vesicular transport is a critical component in styrene-induced neurotoxicity in rats. Both styrene and its intermediate reactive metabolite, styrene oxide antagonized the in vitro striatal binding of [3H] tyramine, a putative marker of the vesicular transporter for dopamine. Both styrene and styrene oxide potently inhibited the uptake of [3H] dopamine in purified synaptic vesicles prepared from rat brain striata, in a dose-related manner, with inhibitory constants (Ki) 2.5 and 2.2 microM respectively. However, neither styrene nor styrene oxide significantly increased the basal efflux of [3H] dopamine that has been preloaded into striatal vesicles in vitro. On the other hand, both styrene and styrene oxide have failed to significantly inhibit the uptake of either [3H] norepinephrine, or [3H] serotonin into striatal synaptic vesicles. It is concluded that both styrene and styrene oxide are capable of producing impairments in dopaminergic transport in purified striatal synaptic vesicles, an effect which may be a critical component in styrene-induced neurotoxicity.  相似文献   

7.
Incubation of S. typhimurium strain TA 1535 with styrene increased the number of his+ revertants/plate in presence of a fortified S9 rat-liver fraction. Styrene was also highly cytotoxic for Salmonella cells. Styrene oxide, the presumed first metabolite, had a mutagenic effect towards strains TA 1535 and TA 100 both with and without metabolic activation. Styrene is probably mutagenic because it is metabolized to styrene oxide.  相似文献   

8.
The mutations and DNA adducts produced by the environmental pollutant 2-nitropyrene were examined in Salmonella typhimurium tester strains. 2-Nitropyrene was a stronger mutagen than its extensively studied structural isomer 1-nitropyrene in strains TA96, TA97, TA98, TA100, TA102, TA104 and TA1538. Both 1- and 2-nitropyrene were essentially inactive in TA1535. The mutagenicity of 1- and 2-nitropyrene in TA98 was much higher than in TA98NR and the activity of these compounds in TA100 was much higher than in TA100NR. While 1-nitropyrene exhibited similar mutagenicity in strains TA98 and TA98/1,8-DNP6, the mutagenicity of 2-nitropyrene in TA98/1,8-DNP6 was much lower than in TA98. Analysis of DNA from TA96 and TA104 incubated with 2-nitropyrene indicated the presence of two adducts, N-(deoxyguanosin-8-yl)-2-aminopyrene and N-deoxyadenosin-8-yl)-2-aminopyrene. The results suggest that 2-nitropyrene is metabolized by bacterial nitroreductase(s) to N-hydroxy-2-aminopyrene, and possibly by activation to a highly mutagenic O-acetoxy ester. DNA adduct formation with deoxyguanosine and deoxyadenosine correlates with the mutagenicity of 2-nitropyrene in tester strains possessing both G:C and A:T mutational targets.  相似文献   

9.
Nitric oxide (NO(*)) reacts with guanine in DNA and RNA to produce xanthine (X) as a major product. Despite its potential importance in NO(*)-mediated mutagenesis, the biochemical properties of X in polynucleotides have been relatively unexplored. We describe the synthesis and chemical characterization of xanthine-containing oligonucleotides and report on the susceptibility of X to depurination, its miscoding potential during replication by polymerases, and its recognition and excision by several members of the base excision repair (BER) family of DNA glycosylases. At neutral pH, X was found to be only slightly less stable than guanine to depurination (k(X)/k(G) = 1.19), whereas at pH Mpg > Nth > Fpg. Implications of these results for the induction of mutations by nitric oxide are discussed.  相似文献   

10.
Estrogen replacement therapy (ERT), composed of equilenin, is associated with increased risk of breast, ovarian, and endometrial cancers. Several diastereoisomers of unique dC and dA DNA adducts were derived from 4-hydroxyequilenin (4-OHEN), a metabolite of equilenin, and have been detected in women receiving ERT. To explore the miscoding property of 4-OHEN-dC adduct, site-specifically modified oligodeoxynucleotides (Pk-1, Pk-2, Pk-3, and Pk-4) containing a single diastereoisomer of 4-OHEN-dC were prepared by a postsynthetic method. Among them, major 4-OHEN-dC-modified oligodeoxynucleotides (Pk-3 and Pk-4) were used to prepare the templates for primer extension reactions catalyzed by DNA polymerase (pol) alpha, pol eta, and pol kappa. Primer extension was retarded one base prior to the lesion and opposite the lesion; stronger blockage was observed with pol alpha, while with human pol eta or pol kappa, a fraction of the primers was extended past the lesion. Steady-state kinetic studies showed that both pol kappa and pol eta inserted dCMP and dAMP opposite the 4-OHEN-dC and extended past the lesion. Never or less-frequently, dGMP, the correct base, was inserted opposite the lesion. The relative bypass frequency past the 4-OHEN-dC lesion with pol eta was at least 3 orders of magnitude higher than that for pol kappa, as observed for primer extension reactions. The bypass frequency past the dA.4-OHEN-dC adduct in Pk-4 was 2 orders of magnitude more efficient than that past the adduct in Pk-3. Thus, 4-OHEN-dC is a highly miscoding lesion capable of generating C --> T transitions and C --> G transversions. The miscoding frequency and specificity of 4-OHEN-dC were strikingly influenced by the adduct stereochemistry and DNA polymerase used.  相似文献   

11.
The solution structures of R- and S-alpha-(N(6)-adenyl)-styrene oxide adducts mismatched with cytosine at position X(7) in d(CGGACAXGAAG) x d(CTTCCTGTCCG), incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, were determined. These were the R- and S(61,3)C adducts. The structures for these mismatched adducts differed from the sequence isomeric R- and S(61,2)C adducts [Painter, S. L., Zegar, I. S., Tamura, P. J., Bluhm, S., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 8635-8646]. The results reveal that the structural consequences of cytosine mispairing opposite the R- and S-alpha-SO adducts differ as a function of DNA sequence. The thermodynamic stability of both the R- and S(61,3)C mismatched adducts was dependent upon pH. At neutral pH, the R- and S(61,3)C adducts exhibited significant structural perturbation and had lower T(m) values, as compared to the R- and S(61,2)C adducts. In both instances, this was attributed to reorientation about the C6-N(6) bond, such that the N(6)H proton faced away from the Watson-Crick face of the purine base and into the major groove. The conformation about the N(6)-C(alpha)-C(beta)-O torsion angle was predicted from rMD calculations to be stabilized by a N/O gauche-type interaction between the styrenyl hydroxyl moiety and adenine N(6) at the lesion site. For the R(61,3)C adduct, the styrenyl moiety remained oriented in the major groove and faced in the 3'-direction. In the properly base-paired R(61,3) adduct, it had faced in the 5' direction. For the S(61,3)C adduct, the styrene ring was inserted into the duplex, approximately perpendicular to the helical axis of the DNA. It faced in the 5'-direction. In the properly base-paired S(61,3) adduct, it had faced in the 3'-direction. The results were correlated with site-specific mutagenesis experiments in vivo. The latter revealed that the R- and S(61,3)-alpha-styrene oxide adducts were nonmutagenic. This may be a consequence of the greater structural perturbation associated with formation of the cytosine mismatch at neutral pH for the R- and S(61,3) adducts as compared to the S(61,2) adduct that exhibited low levels of A --> G mutations.  相似文献   

12.
13.
The genetic toxicology of styrene and styrene oxide   总被引:3,自引:0,他引:3  
R Barale 《Mutation research》1991,257(2):107-126
  相似文献   

14.
15.
16.
Hemoglobins modified for therapeutic use as either hemoglobin-based oxygen carriers or scavengers of nitric oxide are currently being evaluated in clinical trials. One such product, pyridoxalated hemoglobin polyoxyethylene conjugate (PHP), is a human-derived and chemically modified hemoglobin that has yielded promising results in Phase II clinical trials, and is entering a pivotal Phase III clinical trial for the treatment of shock associated with systemic inflammatory response syndrome (SIRS). Shock associated with SIRS is a NO-induced shock. PHP, a new mechanism-based therapy, has been demonstrated in clinical trials to have the expected hemodynamic activity of raising blood pressure and reducing catecholamine use, consistent with its mechanism of action as a NO scavenger. PHP is conjugated with polyoxyethylene, which results in a surface-decorated molecule with enhanced circulation time and stability as well as in attachment of soluble red blood cell enzymes, including catalase and superoxide dismutase. PHP thus contains an antioxidant profile similar to the intact red blood cell and is therefore resistant to both initial oxidative modification by oxidants such as hydrogen peroxide and subsequent ferrylhemoglobin formation. These studies suggest both that the redox activity of modified hemoglobins can be attenuated and that modified hemoglobins containing endogenous antioxidants, such as PHP, may have reduced pro-oxidant potential. These antioxidant properties, in addition to the NO-scavenging properties, may allow the use of PHP in other indications in which excess NO, superoxide, or hydrogen peroxide is involved, including ischemia-reperfusion injury and hemorrhagic shock.  相似文献   

17.
Recently, Stock et al. (J. Biol. Chem. 261, 15915-15922 [1986]) described a model enzyme system composed of horseradish peroxidase, hydrogen peroxide, phenol, glutathione and styrene. This system forms glutathione-styrene conjugates. Glutathione radicals and carbon-centered radicals are intermediates in this process. In the present study, this model enzyme system was also shown to generate singlet oxygen, probably via a Russell mechanism. No singlet oxygen was generated in the absence of styrene. Thus, contrary to prior suggestions, the reaction of glutathione radical with oxygen to produce a thiyl peroxyl radical is not a significant source of singlet oxygen.  相似文献   

18.
In the present study, we characterize the covalent modification of a protein by crotonaldehyde, a representative carcinogenic aldehyde, and describe the endogenous production of this aldehyde in vivo. The crotonaldehyde preferentially reacted with the lysine and histidine residues of bovine serum albumin and generated a protein-linked carbonyl derivative. Upon incubation with the histidine and lysine derivatives, crotonaldehyde predominantly generated beta-substituted butanal adducts of histidine and lysine and N(epsilon)-(2,5-dimethyl-3-formyl-3,4-dehydropiperidino)lysine (dimethyl-FDP-lysine) as the putative carbonyl derivatives generated in the crotonaldehyde-modified protein. To verify the endogenous formation of crotonaldehyde in vivo, we raised the monoclonal antibody (mAb82D3) against the crotonaldehyde-modified protein and found that it cross-reacted with the protein-bound 2-alkenals, such as crotonaldehyde, 2-pentenal, and 2-hexenal. The anti-2-alkenal antibody recognized multiple crotonaldehyde-lysine adducts, including dimethyl-FDP-lysine and an unknown product, which showed the greatest immunoreactivity with the antibody. On the basis of the chemical and spectroscopic evidence, the major antigenic product was determined to be a novel Schiff base-derived crotonaldehyde-lysine adduct, N(epsilon)-(5-ethyl-2-methylpyridinium)lysine (EMP-lysine). It was found that the lysine residues that had disappeared in the protein treated with crotonaldehyde were partially recovered by EMP-lysine. The presence of immunoreactive materials with mAb82D3 in vivo was demonstrated in the kidney of rats exposed to the renal carcinogen, ferric nitrilotriacetate. In addition, the observations that the metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of proteins resulted in an increase in the antigenicity of the protein indicated that lipid peroxidation represents a potential pathway for the formation of crotonaldehyde/2-alkenals in vivo. These data suggest that the formation of carcinogenic aldehydes during lipid peroxidation may be causally involved in the pathophysiological effects associated with oxidative stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号