首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.  相似文献   

2.
Two wheat genotypes varying in susceptibility to infection by Fusarium species were assessed by four different treatments in the field: (a) control, (b) treated with fungicide (Prosaro®), (c) inoculated with Fusarium culmorum spores and treated with fungicide and (d) inoculated with F. culmorum spores. Wort quality indicators (saccharification time, speed of filtration, wort colour, pH, extract, air dried extract and dried extract) were determined using standard methods. The results indicate that infection with F. culmorum affected wort quality, particularly wort colour and significantly extended (or stopped) saccharification and rate of filtration. Treatment with fungicide reduced the extent of quality deterioration, even with samples infected with F. culmorum. The wheat type which was less susceptible to Fusarium infection produced less compromised worts, confirming its superiority to the more susceptible wheat genotype. Further study is suggested at a commercial scale to determine the interrelationship between Fusarium infection, fungicide treatment and wheat malt quality. © 2018 The Institute of Brewing & Distilling  相似文献   

3.
Field experiments were conducted to identify the impact of post-anthesis rainfall on the concentration of deoxynivalenol (DON) and zearalenone (ZON) in harvested wheat grain. Winter wheat plots were inoculated with Fusarium graminearum at stem extension (GS31) and prothioconazole was applied at mid-anthesis (GS65) to split plots and plots were subsequently mist irrigated for 5 days. Plots were either covered by polytunnels, irrigated by sprinklers or left as non-irrigated uncovered control plots after medium-milk (GS75). Plots were harvested either when ripe (GS92; early harvest) or three weeks later (late harvest). Fusarium head blight (FHB) was assessed each week from inoculation. At harvest, yield and grain quality was measured and grains were analysed for DON and ZON. Differences in rainfall resulted in contrasting disease pressure in the two experiments, with low FHB in the first experiment and high FHB in the second. Difference in FHB resulted in large differences in grain yield, quality and mycotoxin content. DON concentration was significantly (< 0.05) higher in irrigated compared to covered and control plots in the first experiment, whereas in the second experiment, DON was significantly (< 0.05) higher in the covered plots compared to the control and irrigated plots. ZON concentration was significantly (< 0.05) higher in irrigated plots in both experiments. Later harvesting resulted in an approximate fivefold increase in ZON in the first experiment, but was not significantly different in the second experiment. Prothioconazole significantly (< 0.05) reduced DON in both experiments, but gave inconsistent reductions to ZON. This is the first report to show that the post-anthesis rainfall can significantly increase ZON in wheat, which can increase further with a delayed harvest but may be significantly reduced with the application of prothioconazole. Importantly, in the absence of moisture late season, ZON remains at very low concentrations even when wheat is severely affected by FHB.  相似文献   

4.
The impact on fungal growth and mycotoxin formation of interactions between fumonisin‐producing isolates of Fusarium moniliforme and F proliferatum and a zearalenone (ZEA)‐ and deoxynivalenol (DON)‐producing isolate of F graminearum inoculated together on irradiated maize at 15 and 25 °C and at 0.98, 0.95 and 0.93 aw was studied. The presence of F graminearum decreased the fungal populations (CFU g−1 grain) of F moniliforme and F proliferatum under almost all conditions tested. In the presence of F moniliforme, CFUs of F graminearum increased significantly at 25 °C, especially at 0.93 and 0.95 aw, while the presence of F proliferatum caused them to increase at 15 °C. The presence of F graminearum always inhibited FB1 production, except at 25 °C and 0.98 aw where it increased. However, the observed differences were not statistically significant. There was no effect of fungal interaction on ZEA production by F graminearum; however, when paired with F moniliforme and F proliferatum, DON production by F graminearum was significantly stimulated, especially at 0.98 aw. © 2000 Society of Chemical Industry  相似文献   

5.
Wheat grain contamination with toxigenic Fusarium spp. is of great economic concern to cereal producers and to the grain processing industry and is of great relevance for the quality and safety of the final products. In particular, the bread production chain can potentially be a vehicle for mycotoxin ingestion above the tolerable total daily intake. A quantitative polymerase chain reaction‐based analytical approach has been developed as a possible tool to estimate and control the risk of mycotoxins, particularly deoxynivalenol (DON). This DNA‐based analytical method has been applied to detect and quantify contamination levels of Fusarium graminearum and Fusarium culmorum in naturally infected wheat grain samples. The persistence of Fusarium contamination was also detected along the bread production chain in wholemeal, flour and bread. A significant correlation was found between Fusarium DNA and DON concentration in all samples.  相似文献   

6.
Fusarium head blight (FHB) of small cereals is a disease of global importance with regard to economic losses and mycotoxin contamination harmful to human and animal health. In Germany, FHB is predominantly associated with wheat and F. graminearum is recognised as the major causal agent of the disease, but little is known about FHB of barley. Monitoring of the natural occurrence of FHB on Bavarian barley revealed differences for individual Fusarium spp. in incidence and severity of grain infection between years and between spring and winter barley. Parallel measurement of fungal DNA content in grain and mycotoxin content suggested the importance of F. graminearum in winter barley and of F. langsethiae in spring barley for FHB. The infection success of these two species was associated with certain weather conditions and barley flowering time. Inoculation experiments in the field revealed different effects of five Fusarium spp. on symptom formation, grain yield and mycotoxin production. A significant association between fungal infection of grain and mycotoxin content was observed following natural or artificial infection with the type B trichothecene producer F. culmorum, but not with the type A trichothecene-producing species F. langsethiae and F. sporotrichioides. Trichothecene type A toxin contamination also occurred in the absence of significant damage to grain and did not necessarily promote fungal colonisation.  相似文献   

7.
This study compares the susceptibility of winter wheat (Triticum aestivum L.) cultivars to Fusarium head blight (FHB) and accumulation of mycotoxins in kernels and chaff under different climatic conditions in two locations–Cerekwica near Poznan (Central West Poland) and Sitaniec, near Zamosc, Lublin region (South East Poland). Very high variations were found in the concentrations of mycotoxins (zearalenone, ZEA; nivalenol, NIV; deoxynivalenol, DON; moniliformin, MON) in examined fractions: Fusarium-damaged kernels (FDK) and healthy looking kernels (HLK) and in chaff for individual cultivars in both locations. In most cases, significantly higher concentrations of investigated toxins were recorded in wheat from the area of Lublin than from Poznan (p < 0.05). The highest Fusarium infection rates and mycotoxin biosynthesis levels were observed in the Lublin location, with the percentage of the FDK fraction ranging 8.1–81.6. In this region, ZEA concentration (µg g?1) after inoculation with F. culmorum and F. graminearum ranged from 0.02–0.48 and 0.32–1.04, respectively. In the Poznan area, the toxin concentrations were considerably lower, ranging 0.01–0.10 and 0.03–0.13 µg g?1 for both isolates, respectively. The concentration of DON was significantly higher than ZEA or NIV levels. The levels of MON accumulation (µg g?1) in the FDK fraction were between 0.14 and 1.73 (Poznan area) and ND (not detected) to 2.51 (Lublin area). F. avenaceum infection rate ranged 7–35% in samples where the toxin was detected.  相似文献   

8.
The aim of the project was to produce updated information during 2005–14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005–06 with the results of the Finnish safety monitoring programme for 2005–14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005–14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005–06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.  相似文献   

9.
Numerous studies have identified the benefit of fungicides applied at flowering (Zadoks Growth Stage (GS) 59–69) in the reduction of Fusarium head blight and the reduction of deoxynivalenol (DON) in harvested wheat grain. Two experiments were performed to identify the ability of prothioconazole (Proline®) at three timings to reduce Fusarium head blight and resulting DON in harvested grain of wheat. Prothioconazole (150 g ha?1) was applied to plots of wheat at GS31, GS39, and GS65 in a full-factorial design. Plots were inoculated with Fusarium-infected oat grain at GS30 and mist-irrigated at GS65 to encourage head blight development. Plots were assessed for head blight symptoms at GS77 and harvested grain was analysed for yield, specific weight, thousand grain weight, and DON. Factorial analysis of variance (ANOVA) identified prothioconazole applications at each timing that resulted in significant reductions in Fusarium head blight and DON. The control achieved with combinations of spray timings was additive with no significant interactions. The control of Fusarium head blight at GS31, GS39, and GS65 was 50, 58 and 83%, respectively. The reduction in Fusarium head blight achieved by all three timings combined was 97% compared to the fully untreated control plots. The reduction of DON after application of prothioconazole at GS31, GS39, and GS65 was 27%, 49%, and 57%, respectively. The application of prothioconazole at all three timings achieved 83% reduction of DON compared with the fully untreated control plots. These experiments have determined, for the first time, significant additional head blight disease control and mycotoxin reduction with applications of a fungicide before flowering.  相似文献   

10.
BACKGROUND: The aim of study was to investigate mycotoxin profiles in the grain of spring lines of Triticum monococcum (12 lines), T. dicoccum (13 lines) and T. spelta (five lines), in comparison to the T. aestivum cultivar Sumai‐3 which is resistant to Fusarium head blight. The grain was obtained from control heads and heads artificially inoculated in the field with Fusarium culmorum. Mycotoxins were determined by LC‐MS/MS. RESULTS: A total of 11 toxins were identified in control grain samples. Deoxynivalenol (DON) concentrations exceeded 0.5 mg kg?1 in only three samples of T. monococcum grain and in one sample of T. dicoccum grain. Inoculation with F. culmorum resulted in a substantial increase in the concentrations of DON (to 63 mg kg?1) in the T. monococcum and DON‐3‐glucoside (to 5.6 mg kg?1) in the T. dicoccum. Inoculation contributed to a drop in tentoxin levels (by 57% in T. spelta) and to an increase of cyclodepsipeptide concentrations (in particular enniatins B and B1) being two‐fold (T. monococcum) to four‐fold (T. dicoccum) higher on average than in control samples. The Sumai‐3 responded to inoculation with nearly a two‐fold drop in the levels of the cyclodepsipeptides. CONCLUSION: The results of a discriminant analysis for all identified toxins indicate that einkorn, emmer and spelt differ significantly with regard to the mycotoxin profiles of their grain. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Fusarium graminearum causes Fusarium head blight, which leads to the quality and yield loss of wheat. In the present work, the inhibition effects of bacillomycin D (BD) on the growth of F. graminearum and reduction of deoxynivalenol (DON) production in wheat grain storage were investigated. The hyphal growth and sporulation of F. graminearum were restrained dramatically in the presence of 75 μg/mL BD, and the inhibition rate reached to 94.6% and 97.5%, respectively. Ultrastructural observation of the hyphae showed BD caused stripping of F. graminearum hyphal surface and destroying of the cellular structure. Furthermore, BD could lower the free fatty acid value and total antioxidant capacity and delay the decline of wheat quality, then exhibit an effective protection for wheat infection by F. graminearum. BD could effectively inhibit mold growth and DON production during wheat seeds storage, thus enhancing the quality and shelf life of the kernel. The addition of BD (75 μg/g wheat) remarkably inhibited the amount of F. graminearum growth, and reduced the DON production to 47.5–71.5%. These results indicated that BD might be a promising natural and effective fungicide, and would have potential for reducing mycotoxins in food and feed.  相似文献   

12.
Over a 4-year period (2010–13), a survey aiming at determining the occurrence of Fusarium spp. and their relations to mycotoxins in mature grains took place in southern Belgium. The most prevalent species were F. graminearum, F. avenaceum, F. poae and F. culmorum, with large variations between years and locations. An even proportion of mating type found for F. avenaceum, F. culmorum, F. cerealis and F. tricinctum is usually a sign of ongoing sexual recombination. In contrast, an unbalanced proportion of mating type was found for F. poae and no MAT1-2 allele was present in the F. langsethiae population. Genetic chemotyping indicates a majority of deoxynivalenol (DON)-producing strains in F. culmorum (78%, all 3-ADON producers) and F. graminearum (95%, mostly 15-ADON producers), while all F. cerealis strains belong to the nivalenol (NIV) chemotype. Between 2011 and 2013, DON, NIV, enniatins (ENNs) and moniliformin (MON) were found in each field in various concentrations. By comparison, beauvericin (BEA) was scarcely detected and T-2 toxin, zearalenone and α- and β-zearalenols were never detected. Principal component analysis revealed correlations of DON with F. graminearum, ENNs and MON with F. avenaceum and NIV with F. culmorum, F. cerealis and F. poae. BEA was associated with the presence of F. tricinctum and, to a lesser extent, with the presence of F. poae. The use of genetic chemotype data revealed that DON concentrations were mostly influenced by DON-producing strains of F. graminearum and F. culmorum, whereas the concentrations of NIV were influenced by the number of NIV-producing strains of both species added to the number of F. cerealis and F. poae strains. This study emphasises the need to pay attention to less-studied Fusarium spp. for future Fusarium head blight management strategies, as they commonly co-occur in the field and are associated with a broad spectrum of mycotoxins.  相似文献   

13.
BACKGROUND: Fusarium head blight of wheat is a destructive disease in various wheat‐growing regions and leads to significant yield losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and its derivatives. Toxigenic Fusarium species sporulate on cereal crop residues and produce significant inoculum for epidemics. Reduction of mycotoxin production and pathogen sporulation may be influenced by saprophytic fungal antagonists. RESULTS: Trichoderma isolates were examined in dual culture bioassays on rice with two isolates of Fusarium graminearum Schwabe and two isolates of Fusarium culmorum (W.G. Smith) Saccardo, belonging to three different chemotypes. Production of five trichothecene mycotoxins, deoxynivalenol (DON), 3‐acetyl‐deoxynivalenol (3AcDON), 15‐acetyl‐deoxynivalenol (15AcDON), nivalenol (NIV) and fusarenone X (FUS), was reduced by over 95%. Two Trichoderma isolates partially reduced the amounts of four metabolites when inoculated on autoclaved cultures of the same four Fusarium isolates. However, in the case of the 15AcDON chemotype of F. culmorum culture the content of DON increased and that of 15AcDON decreased. Isolates of Trichoderma varied in their ability to inhibit production of the five trichothecene mycotoxins by Fusarium. Susceptibility of the four Fusarium isolates to antagonistic activity of the same Trichoderma isolate differed significantly. CONCLUSION: Selected non‐toxigenic Trichoderma isolates proved to be useful biocontrol agents against toxigenic Fusarium pathogens of wheat, significantly reducing production of the trichothecene mycotoxins DON, NIV and their acetylated derivatives. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
The fungal species Fusarium graminearum is related to deoxynivalenol (DON) formation. The aim of this study was to evaluate mycoflora and DON occurrence in 53 whole wheat grain samples collected in Southern Brazil during the 2012 crop. Wheat grains showed adequate values of water activity ranging from 0.48 to 0.72, within the required limits of moisture content, ranging from 9.1% to 13.9%. In addition, low counts of fungal colonies, ranging from 10 to 8.2 × 102, were found. For Fusarium genera, there was predominance of Fusarium verticillioides (34%) and F graminearum (30.2%). For Aspergillus species, 37.7% of Aspergillus flavus was determined. Regarding the Penicillium species, Penicillium digitatum (49%) was the most found species. DON was detected in 47.2% (25 out of 53) of the samples analysed, with levels ranging from 243.7 to 2281.3 µg kg?1 (mean: 641.9 µg kg?1).  相似文献   

15.
Fusarium head blight (FHB) is among the major causes of reduced quality in winter wheat and its products. In addition, the causal fungi produce a variety of toxins. A relatively high FHB infection rate in winter wheat was observed in 2007 and 2008 in Luxembourg. A fusariotoxin survey was carried out in 17 different geographical locations. Three groups of Fusarium mycotoxins (trichothecenes A and B and zearalenone) were analysed by a multi-detection HPLC–MS/MS method. Fusarium strains were also investigated by morphological and molecular methods. In addition, questionnaires relating to cultural practices were sent to the farmers managing the 17 fields investigated. FHB prevalence ranged from 0.3 to 65.8% (mean: 8.5%) in 2007 and from 0 to 24.5% (mean: 8.3%) in 2008. Results of morphological and molecular identification showed that the most common species isolated from diseased wheat spikes was F. graminearum (33.1%), followed by F. avenaceum (20.3%) and F. poae (17.8%). The chemical analysis revealed that 75% of the investigated fields were contaminated by deoxynivalenol (DON, range 0–8111 µg/kg). The preceding crop was highly and significantly correlated to the number of grains infected and had a significant impact on disease prevalence (p = 0.025 and 0.017, respectively, Fisher's F-test). A trend was found for maize as the preceding crop (p = 0.084, Tukey's test) to predict the amount of DON in the fields. This is the first report on the occurrence of DON and ZON in naturally infected wheat grains sampled from Luxembourg.  相似文献   

16.
Fusarium graminearum is the most important pathogen causing Fusarium head blight (FHB) of small cereal grains worldwide responsible for quantitative and qualitative yield losses. The presence in crops is often associated with mycotoxin contamination of foodstuff limiting its use for human and animal consumption. A collection of isolates of F. graminearum from Germany was characterized genetically and chemically for their potential to produce the B trichothecenes deoxynivalenol (DON) and nivalenol (NIV). Molecular methods with eight PCR assays were implemented based on functional Tri7 and Tri13 genes and on the tri5-tri6 intergenic region to differentiate between chemotaxonomic groups DON and NIV, resulting in a marked majority (61/63) of DON chemotypes. Mycotoxins produced on rice kernels were quantified by means of LC-MSMS including DON, NIV, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON), DON-3-glucoside, fusarenon X, as well as zearalenone; all of them proving to be present in high concentration among the isolates. All DON-chemotype isolates also produced lower amounts of NIV with the amount being positively correlated (R² = 0.89) to the DON amount. 15-ADON and 3-ADON are reported to be produced simultaneously by the isolates, the former dominating over the latter in all but one isolate. Fungal biomass, was quantified via ergosterol amount on rice. It was used to calculate specific mycotoxin production per biomass of isolates, ranging from 0.104 to 1.815 mg DON mg-1 ergosterol, presenting a Gaussian distribution. Genotype and phenotype characterization revealed discrepancies with respect to mycotoxin production potential of the fungi, i.e. isolates from one chemotype were able to produce mycotoxins from other chemotypes in considerable amounts.  相似文献   

17.
BACKGROUND: Fusarium toxins, secondary metabolites of toxinogenic Fusarium species, are found in a range of cereal grains. In this study the occurrence of the most commonest Fusarium toxins, namely nivalenol (NIV), deoxynivalenol (DON), deoxynivalenol‐3‐glucoside, fusarenon‐X, 3‐ and 15‐acetyldeoxynivalenol, HT‐2 and T‐2 toxins and zearalenone, in various barley cultivars harvested in 2005–2008 was monitored. The impact of weather, locality, fungicide treatment and barley cultivar (hulless or covered) on contamination was evaluated. The transfer of these mycotoxins into malt was assessed. RESULTS: The most prevalent toxin was DON, which was found in 83% of samples (maximum level 180 µg kg?1), while HT‐2 was detected in 62% of samples (maximum level 716 µg kg?1). Using analysis of covariance, weather was found to be the key factor in all years (P < 0.001). A relationship between cultivar and contamination was confirmed only for HT‐2 (P < 0.001) and T‐2 (P = 0.037), with higher levels of these toxins being observed in hulless cultivars. With the exception of NIV (P = 0.008), no significant relationship was found between fungicide treatment and contamination. No distinct trend regarding DON levels in malt was found, with both decreases and increases occurring. CONCLUSION: The results show an inter‐annual variation in mycotoxin occurrence in barley cultivars as well as differences in contamination of malt produced from fungicide‐treated and untreated barley. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
The quality of harvested wheat grain can deteriorate markedly during the post-harvest management stages. Biotic factors, such as grain type and ripeness, coupled with the prevailing abiotic factors, such as water content and temperature, and also preservative concentration will influence the safe storage life and the level of contamination with mycotoxins. These mycotoxins include deoxynivalenol (DON) produced pre-harvest and zearalenone (ZEA) produced post-harvest by Fusarium graminearum and Fusarium poae, respectively, ochratoxin (OTA) produced by Penicillium verrucosum post-harvest in cool damp northern European climates, and perhaps T-2 and HT-2 toxins produced by Fusarium langsethiae. This review presents recent data on the relationship between dry matter losses caused by F. graminearum under different environmental regimes (water activities, temperatures) and the level of contamination with DON. This is important as poor post-harvest drying and storage management may exacerbate DON contamination already present pre-harvest. It is thus critical to relate the environmental factors in stored wheat grain during storage, especially of intergranular relative humidity (RH) and temperature, to safe storage periods without spoilage or risk from increased DON contamination. The growth/no growth and DON/no DON (F. graminearum) and OTA/no toxin production (P. verrucosum) have been used to build a model with a simple interface to link temperature and RH values to the potential risk level which may allow growth or toxin production. This paper also considers the use of modified atmospheres, preservatives and biocontrol to minimise DON and OTA in moist wheat grain. These approaches together with clear monitoring criteria and hygiene could contribute to better post-harvest management of stored temperate cereals and ensure that mycotoxin contamination is minimised during this key phase in the food/feed chain.  相似文献   

19.
Fusarium verticillioides and F proliferatum isolates were inoculated in mixed cultures with Aspergillus parasiticus on irradiated maize grain at two different inoculum concentrations (2 × 105 and 2 × 102 conidia g?1 dry maize). The treatments were 0.93–0.98 water activity (aw) and 15 and 25 °C for 28 days. A complex relationship was found between aw, temperature, inoculum concentration and the interactions which took place between fumonisin and aflatoxin producers. In general, A parasiticus reduced F verticillioides and F proliferatum populations (by 6–36%) but did not affect fumonisin B1 production by these species. In contrast, while the Fusarium species were not able to decrease A parasiticus populations, they significantly reduced aflatoxin B1 accumulation (by 30–93%). © 2001 Society of Chemical Industry  相似文献   

20.
The presence, development and production of mycotoxins by Aspergillus flavus and Fusarium verticillioides were studied in corn ears under field conditions after artificial contamination of corn silks. The planted area was divided into five treatments: T1, inoculated with A. flavus solution containing 1 × 108 spores, ears covered; T2, inoculated with F. verticillioides solution containing 1 × 108 spores, ears covered; T3, inoculated with F. verticillioides plus A. flavus solution containing 1 × 108 spores of each, ears covered; T4, sprayed with sterile phosphate‐buffered saline, ears covered; T5, non‐sprayed silks, uncovered ears. Soil and air samples were also collected and analysed for the occurrence of fungi. Water activity, relative air humidity, rainfall and temperature were determined to assess the correlation between abiotic factors and the presence of fungi in the samples. Contamination with the inoculated fungus predominated in T1 and T2. In the other treatments, F. verticillioides was the most frequently isolated contaminant irrespective of treatment. Considering the production of mycotoxins, a positive relation between the production of fumonisins B1 and B2 and the frequency of F. verticillioides was statistically verified in all treatments. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号