首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Ceramics International》2017,43(2):2150-2154
Sintered Si3N4 ceramics were prepared from an ɑ-Si3N4/β-Si3N4 whiskers composite powder in-situ synthesized via carbothermal reduction at 1400–1550 °C in a nitrogen atmosphere from SiO2, C, Ni, and NaCl mixture. Reaction temperatures and holding time for the composite powder, and mechanical properties of sintered Si3N4 were investigated. In the synthesized composite powder, the in-situ β-Si3N4 whiskers displayed an aspect ratio of 20–40 and a diameter of 60–150 nm, which was mainly dependent on the synthesis temperature and holding time. The flexural strength, fracture toughness and hardness of the sintered Si3N4 material reached 794±136 MPa, 8.60±1.33 MPa m1/2 and 19.00±0.87 GPa, respectively. The in-situ synthesized β-Si3N4 whiskers played a role in toughening and strengthening by whiskers pulling out and crack deflection.  相似文献   

2.
The method of in situ synthesis of mullite whiskers was introduced to improve the fracture toughness of the corundum-mullite refractory materials. Effects of process parameters (sintering temperature, holding time and addition amount of V2O5) on flexural strength and fracture toughness of corundum-mullite during the in situ toughening course were analyzed. The optimum process parameters (the sintering temperature of 1350 °C, the holding time of 2 h, and the V2O5 addition amount of 5%) for in situ synthesized mullite whiskers to toughen corundum-mullite were obtained by the response surface method combined with single factor analysis. SEM and EDS analysis results demonstrated that the mullite whiskers had been synthesized in corundum-mullite and they could bridge the cracks during the fracture process. After in situ toughening, the flexural strength versus deflection curves of corundum-mullite showed obvious zigzag or waveform characteristics, indicating in situ toughening effects. At the same time, the flexural strength and corresponding deflection increased remarkably.  相似文献   

3.
《Ceramics International》2016,42(15):17179-17184
Mullite-whisker-reinforced anorthite-mullite-corundum porous ceramics were prepared from construction waste and Al2O3 powder by adding AlF3 and MoO3 as the additive and crystallization catalyst, respectively. The effects of AlF3 and MoO3 content on the properties of mullite whiskers, such as open porosity, mechanical properties, pore size distribution, microstructure and phase structure, were investigated in detail. The results showed that the morphology of the mullite whiskers and properties of the porous ceramics were greatly influenced by the AlF3 and MoO3 content. The specimen obtained by co-adding 12 wt% AlF3 and 3 wt% MoO3, and sintering at 1350 °C for 1 h, exhibited excellent properties, including an open porosity of 67.4±0.5% and biaxial flexural strength of 24.0±0.8 MPa. The mullite whiskers were uniformly distributed; the whiskers had a diameter of 0.05–0.5 µm, length of 8–10 µm, and aspect ratios (length to diameter ratio) of 20–30 on average.  相似文献   

4.
《Ceramics International》2016,42(5):6080-6087
In this work, anorthite–mullite–corundum porous ceramics were prepared from construction waste and Al2O3 powders by adding AlF3 and MoO3 as mineralizer and crystallization catalyst, respectively. The effects of the sintering temperature and time on open porosity, mechanical properties, pore size distribution, microstructure, and phase composition were characterized in detail. The results showed that the formation of the mullite whiskers and the properties of the anorthite–mullite–corundum porous ceramics depended more on the sintering temperature than the holding time. By co-adding 12 wt% AlF3 and 4 wt% MoO3, mullite whiskers were successfully obtained at sintering temperatures upon 1350 °C for 1 h. Furthermore, the resultant specimens exhibited excellent properties, including open porosity of 66.1±0.7%, biaxial flexural strength of 23.8±0.9 MPa, and average pore size of 1.32 µm (the corresponding cumulative volume percent was 37.29%).  相似文献   

5.
《Ceramics International》2017,43(9):6786-6790
As-received and pre-coated SiC whiskers (SiCw)/SiC ceramics were prepared by phenolic resin molding and reaction sintering at 1650 °C. The influence of SiCw on the mechanical behaviors and morphology of the toughened reaction-bonded silicon carbide (RBSC) ceramics was evaluated. The fracture toughness of the composites reinforced with pre-coated SiCw reached a peak value of 5.6 MPa m1/2 at 15 wt% whiskers, which is higher than that of the RBSC with as-received SiCw (fracture toughness of 3.4 MPa m1/2). The surface of the whiskers was pre-coated with phenolic resin, which could form a SiC coating in situ after carbonization and reactive infiltration sintering. The coating not only protected the SiC whiskers from degradation but also provided moderate interfacial bonding, which is beneficial for whisker pull-out, whisker bridging and crack deflection.  相似文献   

6.
Si3N4 ceramic matrix composites reinforced by nearly unidirectionally aligned SiC whiskers have been prepared by extrusion and hot pressing. Unlike the case in traditional Si3N4 ceramic matrix composites reinforced by random SiC whiskers, the mechanical properties of the composites exhibit a significant dependence on whisker orientation. In the direction of whisker alignment for SiC(w)/Si3N4 composites, increments in bending strength and fracture toughness of 200 MPa and 3 MPa·m1/2 are obtained respectively, compared to the values in the direction perpendicular to whisker alignment. Based on microscopic fractographic observation and micromechanics analyses, the effects of whisker orientation on toughening mechanisms are discussed. The results indicate that the whisker orientation, θ, is a decisive factor for the essential toughening mechanisms of whiskers. Only in the case of small θ and weak interface can whisker pullout occur, and whisker has maximum toughening effect. The results show that effects of whisker strengthening and toughening can be improved simultaneously through whisker oriented alignment. ©  相似文献   

7.
Short mullite whiskers prepared by firing compacts of kaolin and NH4Al(SO4)2·12H2O powders, with a small addition (0.8, 1.5 wt%) of NaH2PO4·2H2O, in air 1300 and 1400 °C for 15 h have been characterized in terms of whisker morphology, composition and structure. Relatively uniform whisker shaped crystals grew within the silicate glass matrix. After chemically leaching the glass matrix with HF solution using a microwave heating source, the resulting whiskers were exposed as isolated crystals and exhibited an aspect ratio of >17 (~0.5 μm in diameter). The mullite whiskers had a composition of 51.06 mol% Al2O3 and 48.94 mol% SiO2, with an orthorhombic crystallographic structure.  相似文献   

8.
《Ceramics International》2017,43(2):1762-1767
Corundum-mullite composite ceramics have high hardness, small plastic deformation and other excellent performances at high temperature. Corundum-mullite composite ceramics were fabricated from andalusite and α-Al2O3 by in-situ synthesis technology. Effects of mullite/corundum ratio and sintering temperatures on the water absorption, apparent porosity, bulk density, bending strength, thermal shock resistance, phase composition and microstructure of the sample were investigated. Results indicated that the in-situ synthesized mullite from andalusite combined with corundum satisfactorily, which significantly improved the thermal shock resistance as no crack formed after 30 cycles of thermal shock (1100 °C-room temperature, air cooling). Formula A4 (andalusite: 37.31 wt%, α-Al2O3: 62.69 wt%, TiO2 in addition: 1 wt%, mullite: corundum=6:4 in wt%) achieved the optimum properties when sintering at 1650 °C, which were listed as follows: water absorption of 0.15%, apparent porosity of 0.42%, and bulk density of 3.21 g⋅cm−3, bending strength of 117.32 MPa. The phase composition of the sintered samples before and after thermal shock tests were mullite and corundum constantly. The fracture modes of the crystals were transgranular and intergranular fractures, which could endow the samples with high thermal shock resistance.  相似文献   

9.
High-strength self-reinforced porous mullite ceramics were prepared via foam-gelcasting using mullite powder as a main raw material, AlF3·3H2O (0–8 wt%) as an additive, Isobam-104 as a dispersing and gelling agent, sodium carboxymethyl cellulose as a foam stabilizing agent, and triethanolamine lauryl sulfate as a foaming agent. The effects of AlF3·3H2O content on rheological and gelling behaviors of the slurries, and porosity and mechanical properties of self-reinforced porous mullite samples were examined. Addition of AlF3·3H2O promoted the in-situ formation of elongated mullite in the fired porous samples, which improved considerably their mechanical properties. Compressive strength and flexural strength of 67.0% porous mullite ceramics prepared with addition of 6 wt% AlF3·3H2O was as high as 41.3 and 13.9 MPa, respectively. Its hot modulus rupture (HMOR) increased initially with the testing temperature, and peaked (with a maximum value of 16.6 MPa) at 800 °C above which it started to decrease with the testing temperature. Nevertheless, it was still retained as high as 6.7 and 2.8 MPa at 1200 and 1400 °C, respectively.  相似文献   

10.
《Ceramics International》2017,43(14):11274-11280
The perovskite structured lead-free system Na0.5Bi0.5TiO3 (NBT) whiskers were synthesized from whiskers of layered tunnel structured Na2Ti6O13 (NT), using a topochemical route. Both NT and NBT whiskers show high aspect ratios with an average length of 15 µm and diameter of 1 µm. By prolonging the reaction time from 2 h to 6 h at 900 °C, NT whiskers with monoclinic phase completely transformed to NBT whiskers with pseudocubic phase. Typical strip-like nanodomains are observed in a NBT whisker, which are parallel to each other. The piezoelectric response amplitude for a NBT whisker indicates a large electric field induced strain, corresponding to a Smax/Emax value of as high as 300 pm/V. This work provides an in-depth instruction to prepare pure NBT whiskers, and gives the detailed piezoelectricity of NBT whiskers to promote their applications in energy harvesting and micro-electromechanical systems.  相似文献   

11.
《Ceramics International》2017,43(4):3919-3922
Mullite-based ceramics have been synthesized by reactive sintering of a mixture containing kaolin and a mica-rich kaolin waste. Samples fired in the temperature range from 1300 to 1500 °C were characterized by X-ray diffraction (XRD). The quantitative phase analysis and unit cell parameters of the mullite were determined by Rietveld refinement analysis of the XRD data. Mullite-based ceramics with 1.2 wt% quartz, 56.3 wt% glass (amorphous phase), 2.64 g/cm3 of apparent density, and 35±1.2 MPa of flexural strength were obtained after firing at 1500 °C. A liquid phase sintering mechanism activated by a total mica content of 13.3 wt% allowed to increase the mullite content to 47.6 wt% (2.3 wt% quartz and 50.1 wt% glass phase) and improve the flexural strength (70±3.9 MPa) after firing at 1400 °C.  相似文献   

12.
《Ceramics International》2016,42(11):13161-13167
The method of in situ synthesis of mullite whiskers by gas-phase deposition and reaction was applied to improve the compressive strength of the mullite fiber brick. During the preparation process, silica sol, Al(NO3)3 solution and NH4F solution were introduced into the fibrous brick in the form of ions or sol through vacuum impregnation and freeze drying, and the silica sol, Al(NO3)3 and NH4F served as the silica sources, aluminum source and catalyst, respectively. Effects of process parameters (concentration of impregnation solutions, holding time, sintering temperature) on compressive strength and elastic modulus of the fibrous brick during the in situ toughening process were analyzed. SEM and XRD analysis results demonstrated that the mullite whiskers were synthesized on the surface of mullite fibers based on the reaction of AlOF and SiF4. What is more, the whiskers on adjacent fibers intersected with each other and formed many unfixed lap-jointing points, resulting in the increase of compressive strength and elastic modulus. Although the density and thermal conductivity of the sample after the generation of mullite whiskers fabricated with the optimum process were 0.406 g/cm3 and 0.1262 W/(m K), respectively, which were slightly higher than that of the raw fibrous brick (0.375 g/cm3 density and 0.1069 W/(m K) thermal conductivity, respectively), the corresponding compressive strength and elastic modulus of the sample reinforced with the whiskers increased to 1.45 MPa and 42.03 MPa, respectively, which were much higher than that of the raw fibrous brick (0.39 MPa compressive strength and 6.5 MPa elastic modulus).  相似文献   

13.
《Ceramics International》2017,43(14):11197-11203
Silicon carbide reticulated porous ceramics (SiC RPCs) were fabricated by polymer replica technique. The effects of nitride whisker template on the growth of mullite, the strut structure and mechanical properties of SiC RPCs were investigated. Prepolyurethane (PU) open-cell sponge was first coated by SiC slurry consisting of SiC, reactive Al2O3, microsilica and Si powder, then it was nitridized at 1400 °C in a flowing N2 atmosphere to prepare SiC preforms. Subsequently, these preforms were treated by vacuum infiltration of alumina slurry and fired at 1450 °C in air. The results showed that Si2N2O whiskers grew on the surface and in the matrix of SiC preforms after nitridation. The diameter of struts in SiC RPCs increased after vacuum infiltration process because alumina slurry was easily adhered by the surface nitride whiskers. In addition, such whiskers inside the strut of SiC preforms acted as the template to promote the growth of column-liked mullite in SiC RPCs. The mechanical properties and thermal shock resistance of SiC RPCs were greatly improved due to the special interfacial characteristics of multi-layered struts as well as better interlocked column-liked mullite in SiC skeleton.  相似文献   

14.
Titanium carbide ceramics with different contents of boron or B4C were pressureless sintered at temperatures from 2100 °C to 2300 °C. Due to the removal of oxide impurities, the onset temperature for TiC grain growth was lowered to 2100 °C and near fully dense (>98%) TiC ceramics were obtained at 2200 °C. TiB2 platelets and graphite flakes were formed during sintering process. They retard TiC grains from fast growth and reduced the entrapped pores in TiC grains. Therefore, TiC doped with boron or B4C could achieve higher relative density (>99.5%) than pure TiC (96.67%) at 2300 °C. Mechanical properties including Vickers’ hardness, fracture toughness and flexural strength were investigated. Highest fracture toughness (4.79 ± 0.50 MPa m1/2) and flexural strength (552.6 ± 23.1 MPa) have been obtained when TiC mixed with B4C by the mass ratio of 100:5.11. The main toughening mechanisms include crack deflection and pull-out of TiB2 platelets.  相似文献   

15.
《Ceramics International》2016,42(9):11270-11274
Porous mullites with a whiskers framework and high porosities were fabricated by the reaction sintering (1100 to 1600 °C, 1 h, in an airtight container) of an aerogel block shaped by the sol–gel transition of a mullite precursor composed of SiO2 sol, Al2O3 and AlF3 powders (as reaction catalyst). The effect of heating temperatures on porosity, whisker formation, microstructure feature and compressive strength of the porous mullites was determined by XRD, SEM and compressive test. The results indicate that after heating at temperatures from 1100 to 1600 °C, the porosities of the mullites varied within the range of 84.1–80.2%. The whiskers in the framework well lap-jointed each other to form the large space and became elongated and smooth at high temperatures due to the accelerated vapor–solid reaction rate. A maximum compressive strength of 16.1 MPa was obtained for the whiskers framework heated at 1600 °C; this strength was attributed to the strong bonding among the smooth whiskers.  相似文献   

16.
In this paper, zirconium diboride based ceramics added with 20 vol.% silicon carbide particle and 15 vol.% zirconia fiber (Z20Sp15Zf) were prepared by hot-pressing at 1850 °C for 60 min under a uniaxial load of 30 MPa in Ar atmosphere. R-curves for Z20Sp15Zf ceramics were studied using the indentation-strength in bending technique and the envelope method. The results indicated that these two testing methods were consistent and viable for estimating R-curve. Z20Sp15Zf ceramics had high resistance to crack growth and damage tolerance with the 6.8 MPa m1/2 of steady-state toughness. The toughening mechanism was fiber debonding, fiber pull-out, crack bridging, crack branching, crack deflection and transformation toughening.  相似文献   

17.
The crystallization of mullite in amorphous diphasic gel aged for 6 months has been studied using non-isothermal differential scanning calorimetry (DSC) and powder X-ray diffraction with Rietveld structure refinement analysis. The diphasic premullite gels undergo structural changes by aging even when they are calcined at 700 °C. These changes imply segregation of the sample to Al2O3-rich and SiO2-rich regions. From the Al2O3-rich region crystallizes poorly defined AlSi spinel at 977 °C followed by two-step mullite crystallization in the temperature interval of 1200–1300 °C. Two overlapped exothermic peaks on DSC scan of aged gel were observed; the first at 1233 °C and the second at 1261 °C. The former is attributed to mullite crystallization by transformation of AlSi spinel, by which excess alumina occurs, which in the second step of mullitization reacts with amorphous SiO2-rich phase. The activation energy for mullite crystallization in the first step was Ea=935±14 kJ mol−1 and the Avrami exponent n=2.5. The values Ea=1119±25 kJ mol−1 and n=1.2 were obtained for mullite formation in the second step. If amorphous SiO2-rich phase is extracted from the sample, the value Ea=805±26 kJ mol−1 is obtained. Mullite crystallizing from AlSi spinel (when SiO2-rich phase has been extracted) differentiates compositionally from that formed by both reactions. Smaller unit cell parameters and higher amount of oxygen vacancies are incorporated into tetrahedral positions of mullite structure, as was determined by Rietveld structure refinement method.  相似文献   

18.
Glass–ceramics that can be used at temperatures of 1200–1500 °C are found in the alkaline earth aluminosilicate field, and are generally nucleated internally with titania. These glass–ceramics have good strength (>100 MPa, abraded), can be tailored to produce high fracture toughness (2–5 MPa m1/2), and have good dielectric properties. Coefficients of thermal expansion (CTEs) are low to moderate ((25–45) × 10?7 °C?1, from 25 to 1000 °C).The major crystalline phase in the glass–ceramics exhibiting the lowest CTEs is hexagonal cordierite (indialite), while important toughening accessory phases are enstatite and acicular magnesium dititanate.The most refractory glass–ceramics that are easily melted at 1650 °C, yet when crystallized do not deform at 1450 °C, are based on strontium and barium monoclinic feldspars of the celsian type. CTEs range from 35 to 45 × 10?7 °C?1. Acicular mullite is an important accessory phase aiding fracture toughness in these materials.Mullite glass–ceramics which contain considerable siliceous residual glass are probably the most refractory of these glass–ceramics, but they require melting above 1700 °C. Nevertheless, they can be used at temperatures near 1600 °C.Potential applications for refractory glass–ceramics include improved radomes, engine components, substrates for semiconductors and precision metallurgical molds.  相似文献   

19.
Al4SiC4 bulk ceramics were synthesized by reaction hot-pressing using Al, graphite powders and polycarbosilane (PCS) as starting materials. The present work confirmed that this process was an effective method for the preparation of Al4SiC4 ceramics having high relative density and well-developed plate-like grains. The mechanical, thermal properties and oxidation behaviors of the Al4SiC4 ceramics were also investigated. The flexural strength, fracture toughness (KIC) and Vickers hardness at room temperature were 297.1 ± 22 MPa, 3.98 ± 0.05 MPa m1/2, 10.6 ± 1.8 GPa, respectively. The high-temperature bending strength showed an increasing trend with increasing test temperatures, with the value of 449.7 ± 26 MPa at 1300 °C. The thermal expansion coefficient was 6.2 × 10−6 °C−1 in the temperature range from 200 °C to 1450 °C. The isothermal oxidation of Al4SiC4 ceramics at 1200–1600 °C for 10–20 h revealed that it had excellent oxidation resistance.  相似文献   

20.
《Ceramics International》2023,49(1):236-242
In this paper, in-situ whiskers reinforced 3 mol% Y2O3 stabilized tetragonal ZrO2 (3Y-TZP) ceramics with different diameters were prepared using pressureless sintering by introducing tourmaline with different particle sizes into 3Y-TZP powders. The purpose of this research was to investigate the influence of in-situ formed whisker diameters on the densification, microstructure and mechanical properties of 3Y-TZP ceramics. The prepared ceramics were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. Findings indicated that in-situ mullite whiskers formed by phase transformation of tourmaline particles can promote the densification of 3Y-TZP ceramics, and further improve the dispersion of mullite whiskers in the 3Y-TZP ceramics. More importantly, the average diameter of mullite whiskers can be controlled by altering the tourmaline particle size. When the average particle size of tourmaline is 500 nm, 3Y-TZP composites have a near-fully dense microstructure of 99.09%, with the ZrO2 grain size of about 335 nm, the average diameter of mullite whiskers is 330 nm. Both the bending strength and fracture toughness reached optimal values of 836 ± 24 MPa and 10.6 ± 0.5 MPa m0.5, respectively. This paper provides a new way to design of the microstructure and strength-toughness of zirconia composite ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号