首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different characteristics of the spatial-temporal changes of vegetation cover in Guizhou Province of Southern China using the data set of SPOT VEGETATION(1999–2015) at spatial resolution of 1-km and temporal resolution of 10-day. The coefficient of variation, the Theil-Sen median trend analysis, and the Mann-Kendall test are used to investigate the spatial-temporal change of vegetation cover and its future trend. Results show that: 1) the spatial distribution pattern of vegetation cover in Guizhou Plateau is high in the east whereas low in the west. The average annual normalized difference vegetation index(NDVI) from west to east is higher than that from south to north. 2) Average annual NDVI improved obviously in the past 17 years. The growth rate of average annual NDVI is 0.028/10 yr, which is slower than that of vegetation in the country(0.048/10 yr) from 1998 to 2007. Average annual NDVI in karst area is lower than that in non-karst area. However, the growing rate of average annual NDVI in karst area(0.030/10 yr) is faster than that in non-karst area(0.023/10 yr), indicating that vegetation coverage increases more rapidly in karst area. 3) Vegetation coverage in the study area is stable overall, but fluctuates in the local scales. 4) Vegetation coverage presents a continuous increasing trend. The Hurst exponent of NDVI in different vegetation types has an obvious threshold in various elevations. 5) The proportion of vegetation cover with sustainable increase is higher than that of vegetation cover with sustainable decrease. The improvement in vegetation cover may expand to most parts of the study area.  相似文献   

2.
Accurate measurements of the associated vegetation phenological dynamics are crucial for understanding the relationship between climate change and terrestrial ecosystems. However, at present, most vegetation phenological calculations are based on a single algorithm or method. Because of the spatial, temporal, and ecological complexity of the vegetation growth processes, a single algorithm or method for monitoring all these processes has been indicated to be elusive. Therefore, in this study, from the perspective of plant growth characteristics, we established a method to remotely determine the start of the growth season(SOG) and the end of the growth season(EOG), in which the maximum relative change rate of the normalized difference vegetation index(NDVI) corresponds to the SOG, and the next minimum absolute change rate of the NDVI corresponds to the EOG. Taking the Three-River Headwaters Region in 2000–2013 as an example, we ascertained the spatiotemporal and vertical characteristics of its vegetation phenological changes. Then, in contrast to the actual air temperature data, observed data and other related studies, we found that the SOG and EOG calculated by the proposed method is closer to the time corresponding to the air temperature, and the trends of the SOG and EOG calculated by the proposed method are in good agreement with other relevant studies. Meantime, the error of the SOG between the calculated and observed in this study is smaller than that in other studies.  相似文献   

3.
Vegetation is an important factor linking the atmosphere, water, soil, and biological functions, and it plays a specific role in the climate change response and sustainable development of regional economies. However, little information is available on vegetation vulnerability and its driving mechanism. Therefore, studying temporal and spatial change characteristics of vegetation and their corresponding mechanisms is important for assessing ecosystem stability and formulating ecological policies ...  相似文献   

4.
A thorough understanding of the vegetation succession in relation to both climatic changes and anthropogenic activities is vital for the formulation of adaptation strategies that address potential ecosystem challenges. Various climatic factors such as temperature, precipitation, and solar radiation, as well as anthropogenic factors such as ecological engineering and population migration, will affect the conditions for vegetation. However, the relationships among various factors remain unclear and the response of vegetation to climate change and anthropogenic activities in the Loess Plateau of China has not been well established. This study investigated the spatio-temporal characteristics and relationships between vegetation coverage and climatic factors in the Loess Plateau for the period of 1985–2015. Further analysis separated the anthropogenic and climatic factors on vegetation succession based on residual analysis. The results showed that the normalized difference vegetation index(NDVI) followed a significant upward trend with annual change rates of 0.15% during 1985–2015. The trend of human-induced NDVI increase was consistent with the spatial distribution of increasing forest areas in the eastern part of the Loess Plateau. Eco-restoration projects were the main driving factors that promoted vegetation coverage on the Loess Plateau. Furthermore, these results demonstrated that migrants to cities in the Loess Plateau could relieve ecological pressures and promote vegetation restoration. Therefore, the government should strive to increase population mobility and restore vegetation to sustain this particularly fragile ecological environment.  相似文献   

5.
Dominated by an arid and semiarid continental climate, the Beijing-Tianjin Sandstorm Source Region(BTSSR) is a typical ecologically fragile region with frequently occurring droughts. To provide information for regional vegetation protection and drought prevention, we assessed the relations between vegetation cover change(measured by the Normalized Difference Vegetation Index,NDVI) and the Standardized Precipitation Evapotranspiration Index(SPEI) at different time-scales, in different growth stages, in different subregions and for different vegetation types based on the Pearson's correlation coefficient in the BTSSR from 2000 to 2017. Results showed that 88.19% of the vegetated areas experienced increased NDVI in the growing season; 48.3% of the vegetated areas experienced significantly increased NDVI(P 0.05) and were mainly in the south of the BTSSR. During the growing season, a wetter climate contributed to the increased vegetation cover from 2000 to 2017, and NDVI anomalies were closely related to SPEI. The maximum correlation coefficient in the growing season(Rmax) was significantly positive(P 0.05) in 97.84% of the total vegetated areas. In the vegetated areas with significantly positive Rmax, pixels with short time-scales(1–3 mon) accounted for the largest proportion(33.9%).The sensitivity of vegetation to the impact of drought rose first and then decreased in the growing season, with a peak in July. Compared with two subregions in the south, subregions in the north of the BTSSR were more sensitive to the impacts of drought variations,especially in the Xilingol Plateau and Wuzhumuqin Basin. All four major vegetation types were sensitive to the effects of drought variations, especially grasslands. The time-scales of the most impacting droughts varied with growth stages, regions, and vegetation types.These results can help us understand the relations between vegetation and droughts, which are important for ecological restoration and drought prevention.  相似文献   

6.
Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has been filled through quantifying and evaluating spatial heterogeneity of urban and natural landscapes from QuickBird, Satellite pour l'observation de la Terre (SPOT), Ad- vanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) images with variogram analysis. Instead of a logarithmic relationship with pixel size observed in the corresponding aggregated images, the spatial variability decayed and the spatial structures decomposed more slowly and complexly with spatial resolution for real multisensor im- ages. As the spatial resolution increased, the proportion of spatial variability of the smaller spatial structure decreased quickly and only a larger spatial structure was observed at very coarse scales. Compared with visible band, greater spatial variability was observed in near infrared band for both densely and less densely vegetated landscapes. The influence of image size on spatial heterogeneity was highly dependent on whether the empirical sernivariogram reached its sill within the original image size. When the empirical semivariogram did not reach its sill at the original observation scale, spatial variability and mean characteristic length scale would increase with image size; otherwise they might decrease. This study could provide new insights into the knowledge of spatial heterogeneity in real multisen- sor images with consideration of their nominal spatial resolution, image size and spectral bands.  相似文献   

7.
Through a case study of Shenzhen City,China,this study focused on a quantitative method for analyzing the spatial processes involved in green infrastructure changes associated with rapid urbanization.Based on RS,GIS and SPSS statistics software,the approach includes selection of the square analysis units and representative landscape metrics,quantification of the change types of landscape metrics in all analysis units through two indices and hierarchical cluster analysis of the above analysis units with different landscape metric change types(i.e.spatial attributes).The analyses verify that there is a significant sequence of continuous changes in green infrastructure in Shenzhen.They are the perforation,the segmentation,the fragmentation,the evanescence and the filling-in processes,which have a good spatio-temporal correspondence with urbanization and reflect the synthetic influence of urban planning,government policies and landforms.Compared with other studies on quantifying the spatial pattern,this study provides an alternative probe into linking the spatial pattern to spatial processes and the corresponding ecological processes in the future.These spatio-temporal processes offer many opportunities for identifying,protecting and restoring key elements in an urban green infrastructure network for areas in the early stages of urbanization or for non-urbanized areas.  相似文献   

8.
Xiamen is an economically competitive and highly urbanized city along the coastal area of Fujian Province, China. The research on spatio-temporal variation of landscape heterogeneity under the influence of human activities is of great importance to the further study on the relationship of landscape pattern and ecological process. It is also crucial to the discovery of spatial variation and intensity distribution of human activities. The research analyzed the intensity of human impacts and the spatial variation features and dynamics of landscape patterns by introducing statistical theories and approaches. We analyzed spatio-temporal variation of landscape heterogeneity using the geostatistical techniques, such as semivariogram and Kriging interpolation.Results show that there is a higher correlation between landscape heterogeneity indexes and human impact index. Both the indexes show a moderate spatial autocorrelation as well as an obvious characteristic of anisotropy. From 1998 to 2008, the spatial differentiation of the changes in the intensity of human activities and the changes in landscape heterogeneity shows that the landscape patterns in Xiamen are closely related with the urban land utilization methods, the condition of traffic and geographical location and the physical geographical condition such as the terrain and the ecological environment. The process of urbanization has a significant impact on the urban landscape pattern.  相似文献   

9.
Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.  相似文献   

10.
Formulation of different ecological zone plans according to the corresponding protection targets and the necessity of proper conservation policy is one of the measures to achieve the goal of ecological conservation in China.In order to clarify the interrelation among key ecological zone plans,this paper carried out the research on spatial relation of priority areas of biodiversity conservation and three key ecological areas(key ecological function areas,key regions of ecological service function,national nature reserves) and the research on ecological conditions,based on multi-scale ecological spatial theme information,which incorporates elements like ecologi-cal quality and type,and by the aid of spatial information analysis and GIS modeling.The results showed a contrastively fine spatial consistency with 68.8% of priority areas of biodiversity conservation overlapping with three key ecological areas.Although the envi-ronment in priority areas of biodiversity conservation were in good conditions,protection pressure is also increasing,powerful supervi-sion and protection should not be ignored.The environmental conditions in the overlapping areas,as a whole,were superior to those in the non-overlapping areas.Since two areas have different characteristics,targeted protection measures should be formulated based on this difference,which will be very important for biodiversity conservation in priority areas of biodiversity conservation.  相似文献   

11.
Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understand the trends of vegetation cover, this research examined the spatial-temporal trends of global vegetation by employing the normalized difference vegetation index(NDVI) from the Advanced Very High Resolution Radiometer(AVHRR) Global Inventory Modeling and Mapping Studies(GIMMS) time series(1982–2015). Ten samples were selected to test the temporal trend of NDVI, and the results show that in arid and semi-arid regions, NDVI showed a deceasing trend, while it showed a growing trend in other regions. Mann-Kendal(MK) trend test results indicate that 83.37% of NDVI pixels exhibited positive trends and that only 16.63% showed negative trends(P 0.05) during the period from 1982 to 2015. The increasing NDVI trends primarily occurred in tree-covered regions because of forest growth and re-growth and also because of vegetation succession after a forest disturbance. The increasing trend of the NDVI in cropland regions was primarily because of the increasing cropland area and the improvement in planting techniques. This research describes the spatial vegetation trends at a global scale over the past 30+ years, especially for different land cover types.  相似文献   

12.
In karst regions,the spatial heterogeneity of soil mineral oxides and environmental variables is still not clear.We investigated the spatial heterogeneity of SiO2,Al2O3,Fe2O3,CaO,MgO,P2O5,K2O,and MnO contents in the soils of slope land,plantation forest,secondary forest,and primary forest,as well as their relationships with environmental variables in a karst region of Southwest China.Geostatistics,principal component analysis(PCA),and canonical correlation analysis(CCA)were applied to analyze the field data.The results show that SiO2was the predominant mineral in the soils(45.02%–67.33%),followed by Al2O3and Fe2O3.Most soil mineral oxide components had a strong spatial dependence,except for CaO,MgO,and P2O5in the plantation forest,MgO and P2O5in the secondary forest,and CaO in the slope land.Dimensionality reduction in PCA was not appropriate due to the strong spatial heterogeneity in the ecosystems.Soil mineral oxide components,the main factors in all ecosystems,had greater influences on vegetation than those of conventional soil properties.There were close relationships between soil mineral oxide components and vegetation,topography,and conventional soil properties.Mineral oxide components affected species diversity,organic matter and nitrogen levels.  相似文献   

13.
Conventional farming-pastoral ecotones methods of delineating were not quantitative and could not fully show their spatial distribution. The present paper attempts to develop quantitative methods for mapping farming-pastoral ecotones in China. Nine indicators, related to temperature, precipitation and altitude aspects, were selected to quantify ecological susceptibility of vegetation (crops and forage). Methods of analytic hierarchy process (AHP) and expert score ranking combined with fuzzy set theory were applied to assign the weight for each indicator and to define the membership functions. The geographic information system (GIS) was used to manage the spatial database and conduct the spatial analysis. According to the spatial calculation of evaluation model integrated with GIS, the ecological susceptibility of vegetation (crops and forage) was mapped. Three different zones, pastoral area, farming-pastoral ecotones and farming area, were classified by spatial cluster analysis and the maximum likelihood classification for the numeric map of vegetation ecological susceptibility by GIS. This map was validated by the economic statistical result based on the ratio of the output value from animal husbandry in total output value of agriculture by the National Bureau of Statistics in China, indicating that the mapping of the farming-pastoral ecotones may be accepted.  相似文献   

14.
Temporal and spatial heterogeneity identifications of marine environment and its changes have great significances in marine spatial planning and offshore pollution control.In this study,considering the integration of marine ecological environment and sea-land interaction,we built a spatialized evaluation model named Marine Environment Change Spatial Assessment(MECSA)to quantify the marine environment status and changes.In MECSA,we applied the geospatial model and the pressure-state-response(PSR)model for processing and integrating evaluation indicators.A case study in the Laizhou Bay showed that the marine environment quality was generally in a declining state from 2009 to 2015.In 2015,the Marine Environment Index(MEI)had decreased by 0.1 compared with 2009,although the two years all reached a‘Good'level.The spatial MEI layers of the two years showed a same distribution:the southwestern part was in poorer status,with a fan ring shape gradually getting better to the northeast.The Marine Organisms Response Index(MORI)contributed the most to the MEI.Therefore,future marine environmental assessment and spatial planning should focus on the identification the marine environment with its changes from the perspective of spatial heterogeneity and systemicity.Based on single indicators and comprehensive evaluation results,we can propose spatially targeted policies and recommendations scientifically.  相似文献   

15.
Field-based fire studies in the equatorial Andes indicate that fires are strongly associated with biophysical and anthropogenic variables. However, fire controls and fire regimes at the regional scale remain undocumented. Therefore, this paper describes spatial and temporal burned-area patterns, identifies biophysical and anthropogenic fire drivers, and quantifies fire probability across 6° of latitude and 3° of longitude in the equatorial Andes. The spatial and temporal burned-area analysis was carried out based on 18 years(2001-2018) of the MCD64 A1 MODIS burned-area product. Climate, topography, vegetation, and anthropogenic variables were integrated in a logistic regression model to identify the significance of explanatory variables and determine fire occurrence probability. A total of 5779 fire events were registered during the 18 years of this study, located primarily along the western cordillera of the Andes and spreading from North to South. Eighty-eight percent of these fires took place within two fire hotspots located in the northwestern and southwestern corners of the study area. Ninety-nine percent occurred during the second part of the year, between June and December. The largest density of fires was primarily located on herbaceous vegetation and shrublands. Results show that mean monthly temperature, precipitation and NDVI during the prefire season, the location of land cover classes such as forest and agriculture, distance to roads and urban areas, slope, and aspect were the most important determinants of spatial and temporal fire distribution. The logistic regression model achieved a good accuracy in predicting fire probability(80%). Probability was higher in the southwestern and northern corners of the study area, and lower towards the north in the western and eastern piedmonts of the Andes. This analysis contributes to the understanding of fires in mountains within the tropics. The results here presented have the potential to contribute to fire management and control in the region.  相似文献   

16.
Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the environmental factors that are responsible for the variations in species composition and richness of alpine shrublands using numericalmethods. In the present study, we investigated vegetation and associated environmental variables from 45 sample plots in the middle Qilian Mountains of the northwestern China to classify different community types and to elucidate the speciesenvironment relationships. We also estimated the relative contributions of topography and site conditions to spatial distribution patterns of the shrub communities using the variation partitioning. The results showed that four shrub community types were identified and striking differences in floristic composition were found among them. Species composition greatly depended on elevation, slope,shrub cover, soil p H and organic carbon. The important determinants of species richness were soil bulk density and slope. No significant differences in species richness were detected among the community types. Topography and site conditions had almost equal effects on compositional variation. Nonetheless,a large amount of the variation in species composition remained unexplained.  相似文献   

17.
The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned their performance when regions suffer from drought. Whether we should consider the effects of drought on vegetation change in assessments of the benefits of ecological restoration programs is unclear. Therefore, taking the Grain for Green Program(GGP) region as a study area, we estimated vegetation growth in the region from 2000–2010 to clarify the trends in vegetation and their driving forces. Results showed that: 1) vegetation growth increased in the GGP region during 2000–2010, with 59.4% of the area showing an increase in the Normalized Difference Vegetation Index(NDVI). This confirmed the benefits of the ecological restoration program. 2) Drought can affect the vegetation change trend, but human activity plays a significant role in altering vegetation growth, and the slight downward trend in the NDVI was not consistent with the severity of the drought. Positive human activity led to increased NDVI in 89.13% of areas. Of these, 22.52% suffered drought, but positive human activity offset the damage in part. 3) Results of this research suggest that appropriate human activity can maximize the benefits of ecological restoration programs and minimize the effects of extreme weather. We therefore recommend incorporating eco-risk assessment and scientific management mechanisms in the design and management of ecosystem restoration programs.  相似文献   

18.
Based on the fractal theory, the spatial structure of China's vegetation has been analyzed quantitatively in this paper. Some conclusions are drawn as the following. 1) The relationships between size and frequency of patch area and patch shape index exist objectively for China's vegetation. 2) The relationships between perimeter and area exist objectively for China's vegetation. 3) The fractal dimension of evergreen needleleaf forests on mountains in subtropical and tropical zones is the largest, while the smallest for deciduous broadleafand evergreen needleleaf mixed forests in temperate zone, reflecting the most complex spatial structure for evergreen needleleaf forests on mountains in subtropical and tropical zones and the simplest for deciduous broadleaf and evergreen needleleaf mixed forests in temperate zone. 4) The fractal dimensions of China's vegetation types tend to decrease from thc subtropics to both sides. 5) The stability of spatial structure of deciduous broadleaf and evergreen needleleaf mixed forests in temperate zone is the largest, while the smallest for double-cropping rice, or double-cropping rice and temperate-like grain, and tropical evergreen economic tree plantations and orchards, reflecting the steadiest for deciduous broadleaf and evergreen needleleaf mixed forests in temperate zone and the most unstable for double-cropping rice, or double-cropping rice and temperate-like grain, and tropical evergreen economic tree plantations and orchards in spatial structure. 6) The stability of spatial structure of China's vegetation tends to decrease from the temperate zone to both sides, it is significantly pertinent to understand the formation, evolution, dynamics and complexity rule of ecosystem of vegetation.  相似文献   

19.
The north-south transitional zone in China mainly consists of the Qinling-Daba Mountains. It is the most important West-East geo-ecological space in China, containing protected areas vital for biodiversity conservation and ecological security of China. The protection and rational development of its natural habitat is of great significance to China’s ecological security and integration of protected areas based on mountain forest ecosystems on a global scale. In this study, five important types of protected areas in the transitional zone were selected, and their spatial patterns were analysed. Spatial analysis methods, such as kernel density estimation and accessibility analysis, were employed for both point and areal data, and focused on four aspects: land use scale, shift in the centre of gravity, spatial agglomeration, and accessibility. In addition, policy background and evolution of spatial and temporal characteristics of the protected area system in the transitional zone from 1963 to 2017 were also examined. We analysed the characteristics and geographical significance of the West-east corridor using the spatial pattern of the protected area system from the perspective of ecological and economic spaces. We focused on spatial shape, type intersection, and key areas to analyse the spatial overlap of the protected areas. Protected area establishment was divided into three stages: initial(1956–1980), rapid development(1981–2013), and national park transformation(2014–present). These stages reflected the change in the concept of ‘simple protection—sustainable use—integration and upgrade’ for protected areas of China. The spatial centre of gravity of the protection zone system was located in the west Qinling-Daba Mountains, and its high-density core exhibited a relatively stable N-shaped structure composed of four gathering areas. Affected by factors such as geographic environment and socio-economic development density, the average access time for protected areas was high(1.56 h);wetland parks and scenic areas are located closer to the city centre. As the West-east corridor in the transitional zone extends from west to east, there is a clear spatial dislocation between the development of protected areas and the intensity of human activities. During development, differentiated goal orientation should be adopted based on the idea of zoning and classified governance. With the advancement of the construction of protected areas, the spatial overlap of protected areas in the transition zone has become more prominent. At present, the spatially overlapped protected areas in the transitional zone remain prominent, with inclusion overlap being the most common, and forest parks exhibiting the highest probability of overlap with other protected areas, we should focus on in the integration process of the corridor-type ecological space based on the mountain forest ecosystem.  相似文献   

20.
Vegetation phenology is an indicator of vegetation response to natural environmental changes and is of great significance for the study of global climate change and its impact on terrestrial ecosystems. The normalized difference vegetation index(NDVI) and enhanced vegetation index(EVI), extracted from the Moderate Resolution Imaging Spectrometer(MODIS), are widely used to monitor phenology by calculating land surface reflectance. However, the applicability of the vegetation index based on ‘greenness' to monitor photosynthetic activity is hindered by poor observation conditions(e.g., ground shadows, snow, and clouds). Recently, satellite measurements of solar-induced chlorophyll fluorescence(SIF) from OCO-2 sensors have shown great potential for studying vegetation phenology. Here, we tested the feasibility of SIF in extracting phenological metrics in permafrost regions of the northeastern China, exploring the characteristics of SIF in the study of vegetation phenology and the differences between NDVI and EVI. The results show that NDVI has obvious SOS advance and EOS lag, and EVI is closer to SIF. The growing season length based on SIF is often the shortest, while it can represent the true phenology of vegetation because it is closely related to photosynthesis. SIF is more sensitive than the traditional remote sensing indices in monitoring seasonal changes in vegetation phenology and can compensate for the shortcomings of traditional vegetation indices. We also used the time series data of MODIS NDVI and EVI to extract phenological metrics in different permafrost regions. The results show that the length of growing season of vegetation in predominantly continuous permafrost(zone I) is longer than in permafrost with isolated taliks(zone II). Our results have certain significance for understanding the response of ecosystems in cold regions to global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号