首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum oxide (Al2O3) thin films were deposited on silicon (100) and quartz substrates by pulsed laser deposition (PLD) at an optimized oxygen partial pressure of 3.0×10?3 mbar in the substrate temperatures range 300–973 K. The films were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy, spectroscopic ellipsometry, UV–visible spectroscopy and nanoindentation. The X-ray diffraction studies showed that the films deposited at low substrate temperatures (300–673 K) were amorphous Al2O3, whereas those deposited at higher temperatures (≥773 K) were polycrystalline cubic γ-Al2O3. The transmission electron microscopy studies of the film prepared at 673 K, showed diffuse ring pattern indicating the amorphous nature of Al2O3. The surface morphology of the films was examined by atomic force microscopy showing dense and uniform nanostructures with increased surface roughness from 0.3 to 2.3 nm with increasing substrate temperature. The optical studies were carried out by ellipsometry in the energy range 1.5–5.5 eV and revealed that the refractive index increased from 1.69 to 1.75 (λ=632.8 nm) with increasing substrate temperature. The UV–visible spectroscopy analysis indicated higher transmittance (>80%) for all the films. Nanoindentation studies revealed the hardness values of 20.8 and 24.7 GPa for the films prepared at 300 K and 973 K respectively.  相似文献   

2.
Nanostructure CuO/ZnO mixed oxide was systematically prepared via the sol–gel route using zinc and copper carbonates as precursors (molar ratio of 2:1) under thermal decomposition. The zinc and copper carbonates precursors have been synthesized by a simple chemical reaction in high yield and characterized by its melting point, FT-IR and thermal analysis (TG/DTG). The TG/DTG analysis proved that the thermal decomposition of zinc and copper carbonates precursors at 255 °C and 289 °C respectively. Thermo-gravimetric analysis (TG-DTG), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS) studies were undertaken to investigate the thermal properties and electronic structure of the CuO/ZnO mixed oxide catalysts. XRD data of the samples proved the formation of the nano-crystalline CuO/ZnO mixed oxide. Scanning electron microscopy (SEM) showed that the spherical-like particles have a diameter in the range 35–45 nm. Optical spectra of the nanostructure show a band peaked at 1.35 eV which is associated to near band gap transitions of CuO and a band centered at about 3.00 eV related to band gap transitions of ZnO nanostructures.  相似文献   

3.
《Ceramics International》2016,42(13):14862-14866
TiO2 was prepared by detonating a slurry explosive made of Ti precursor, ammonium nitrate, cyclotrimethylenetrinitramine (RDX), and polystyrene (EPS). X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and UV–vis diffuse reflection spectroscopy revealed that the sample was composed of mixed crystals of rutile and anatase TiO2 with irregular spherical shapes and 10 nm particle size. The minimum energy gap of the sample was 2.9 eV. An ideal TiO2 explosive was prepared from a precursor/ammonium nitrate/RDX ratio of 1:1:0.6 and 2 g of EPS as a density modifier.  相似文献   

4.
A series of novel microdomain-graphitized polyacrylonitrile (PAN)-based nanofibers were prepared by adding varied amounts of graphene oxide into the precursor via the electrospinning method. These hybrid electrospun nanofibers with were stabilized in ambient atmosphere, carbonized in nitrogen atmosphere and treated in NH3 atmosphere for NO oxidation with low concentration (50 ppm) at room temperature. The samples were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and nitrogen adsorption at 77 K. Oxidation of NO into NO2 at room temperature was investigated in a fiber fixed-bed. The results demonstrated that the reduced graphene oxide sheets provide catalytic active sites embedded in the PAN-based nanofibers. In addition it was determined that nitrogen-containing functional groups played important roles in the enhancement of the catalytic oxidation of NO to NO2. The samples with 5 wt.% GO exhibit the most catalytic oxidation of NO into NO2.  相似文献   

5.
《Ceramics International》2017,43(2):1710-1715
Zinc oxide (ZnO), a wide band-gap semiconductor, has received a great interest due to its potential applications in various fields both as nanostructures and as sintered compacts. In this study, we report on the synthesis of the ZnO nanostructures and facilitation of their sintering for the production of fine-grained dense compacts. The facile synthesis of gram scale ZnO nanostructures was achieved by thermal decomposition of zinc acetate dihydrate (Zn(Ac)2·2H2O) or Zn(Ac)2·2H2O/graphite mixtures at 300 °C for 12 h. Thermal decomposition of Zn(Ac)2 resulted in the formation of mostly ZnO nanoparticles with wurtzite structure along with ZnO nanorods, while the addition of graphite significantly promoted the growth of ZnO nanowires. Microstructural and phase properties of the obtained ZnO nanostructures were determined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) techniques, all of which revealed the successful synthesis of high quality ZnO nanostructures. In addition to synthesis and characterization of the ZnO nanostructures, we report on the enhancement of their sinterability by a subsequent cryogenic milling for a short duration of 5 min. As a result of the applied cryo-milling, fabrication of highly dense (96.2%) sintered compacts with fine grain sizes (572 nm) could be achieved after pressureless sintering at 1000 °C for 2 h.  相似文献   

6.
《Ceramics International》2017,43(3):3212-3217
This paper presents the experimental data on the synthesis of titanium diboride (TiB2) fine dispersed powder carried out in laboratory scale. TiB2 powder was prepared by the reduction of titanium dioxide with boron carbide and nanofibrous carbon in an argon atmosphere. The powders of TiB2 were characterized by X-ray diffraction (XRD), elemental analyses, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), low-temperature nitrogen adsorption, particle size analysis, simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC). The resulting material contains a single phase – titanium diboride. The particles of the powder were predominantly aggregated. The average size of the particles and the aggregates were 7.4–8.0 µm with a wide size of distribution. The specific surface values of samples obtained were 2.4–5.8 m2/g. The oxidation of titanium diboride began from the temperature of 450 °C. In this work, the optimal synthesis conditions were estimated: the molar ratio was TiO2:B4C:C=2:1:3 (according to stoichiometry), the temperature was 1600 °C, the process duration was 20–30 min.  相似文献   

7.
Dumbbell-shaped ZnO microstructures have been successfully synthesized by a facile hydrothermal method using only Zn(NO3)2·6H2O and NH3·H2O as raw materials at 150 °C for 10 h. The results from X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) show that the prepared ZnO samples exhibit dumbbell-shaped morphology and hexagonal wurtzite structure. The length of ZnO dumbbells is about 5–20 μm, the diameters of the two ends and the middle part are about 1–5 μm and 0.5–3 μm, respectively. The dumbbell-shaped ZnO microstructures may be formed by self-assembly of ZnO nanorods with 1–5 μm in length and 100–200 nm in diameter. The photoluminescence (PL) spectrum of dumbbell-shaped ZnO microstructures at room temperature shows three emission peaks at about 362, 384 and 485 nm.  相似文献   

8.
A Cu(II) Schiff base coordination polymer, {[Cu3L(μ2-NO3)2·(H2O)2].3H2O}n, is readily prepared by complexation of the tetrapodal Schiff base, H4L (H4L = 1,1,1,1-tetrakis[(salicylaldimino)methyl]methane), with cupric nitrate trihydrate. It has been demonstrated that the coordination polymer consists of linear trinuclear Cu(II) entities, and displays a cooperative coordination mode for nitrate anions, coordinated water molecules, and Schiff base ligands to Cu(II) ions. In addition, variable-temperature magnetic susceptibility measurements reveal a strong antiferromagnetic coupling interaction between adjacent copper(II) ions with large J value of − 289.66 cm 1.  相似文献   

9.
SnO2 nanofluids were prepared by dispersing tin dioxide nanoparticles in deionized (DI) water as a base fluid. 4–5 nm tin dioxide crystals were synthesized via chloride solution combustion synthesis (CSCS) using SnCl4 and sorbitol as a novel precursor and the fuel, respectively. Ammonium nitrate was also used as the combustion aid. The molar ratio of sorbitol plus ammonium nitrate to SnCl4 was set at unity; whereas, the molar ratio of sorbitol-to-ammonium nitrate divided by that of stoichiometric value (Φ) was varied in the range of 0.5–1.4 in order to find the optimum values of specific surface area for the CSCS technique. Transition electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and Brunauer–Emmet–Teller (BET) techniques were employed for the characterization of the nanoparticles. Since SnO2 nanoparticles form clusters within fluids, the fluids were ultrasonicated to improve the dispersion and stability of the nanoparticles. The colloidal stability of the SnO2 nanofluids was quantitatively characterized by UV–vis spectrophotometric measurements. The results of the UV–vis experiments indicate higher dispersion together with enhanced stability for the nanofluid prepared by SnO2 nanoparticles synthesized at Φ = 1.0. After 500 h sedimentation time, the relative concentration of the nanofluid with the highest stability is remained at around 77% of the initial concentration of the fluid.A transient hot-wire apparatus was used to measure the thermal conductivities of the nanofluids. In addition, the effects of pH and temperature on the thermal conductivity were also investigated. At 353 K, for the nanofluid prepared by SnO2 nanoparticles synthesized at Φ = 1.0 at a weight fraction of 0.024%, thermal conductivity is enhanced up to about 8.7%, with an optimal pH = 8.  相似文献   

10.
《Ceramics International》2016,42(12):14066-14070
Ultrahigh temperature ZrB2-SiCw-Graphene ceramic composites are fabricated by hot pressing ZrB2-SiCw-Graphene oxide powders at 1950 °C and 30 MPa for 1 h. The microstructures of the composites are characterized by Scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The results show that multilayer graphene nanosheets are achieved by thermal reduction of graphene oxide during sintering process. Compared with monolithic ZrB2 materials, flexural strength and fracture toughness are both improved due to the synergistic effect of SiC whisker and graphene nanosheets. The toughening mechanisms mainly are the combination of SiC whisker and graphene nanosheets crack bridging, pulling out.  相似文献   

11.
《Ceramics International》2017,43(13):10270-10276
Nanosize multiferroic YFeO3 powders have been synthesized via the low temperature solid-state reaction. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy all indicated that the phase-pure orthorhombic YFeO3 powders were obtained at 800 °C with a size below 150 nm. X-ray photoelectron spectroscopy (XPS) showed the Fe3+ ions to be predominant. Magnetic hysteresis loops exhibited some ferromagnetic behaviour of the YFeO3 nanopowders at ambient temperature. The maximum and remnant magnetizations of the powders were about 2.49 and 0.88 emu/g, respectively. Moreover, optical measurements demonstrated that the optical band gap of the nanopowders was around 2.4 eV, proving that they can strongly absorb visible light. So an easy and efficient way to synthesize YFeO3 nanopowders with promising application in the magnetic and optical fields has been successfully developed.  相似文献   

12.
In this paper, polycrystalline zinc oxide (ZnO) nanostructures have been prepared by a hydrothermal synthesis through rapid microwave heating (180 s). The structure, composition and optical properties of the products were examined by scanning electron microscopy (SEM), energy dispersive x-ray spectrum (EDS), ultraviolet–visible spectroscopy (UV–vis), x-ray diffraction (XRD), photoluminescence spectroscopy (PL) and Raman spectroscopy. Typically, the synthesized nanostructures were zinc-rich with diameter ranging from 20 nm to 200 nm in length. From the Raman spectroscopy and PL measurements, it was found that the as-deposited films contain vacancy defects that originated from the rapid synthesis process.  相似文献   

13.
The polyvinyl chloride (PVC) based polyvinyl alcohol zinc oxide composite membrane was successfully prepared by solution casting technique. Membrane properties were studied in terms of water uptake, porosity, thickness, ion-exchange capacity and swelling. The physico-chemical characterization of the material was studied using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies. The important application of this composite ion-exchange membrane is in environmental separation of heavy metal ions transport. The increasing order of transport number of cation as HgCl2 < PbCl2 < CdCl2.  相似文献   

14.
TiO2 hollow nanostructures were successfully synthesized by a controlled hydrothermal precipitation reaction using Resorcinol–Formaldehyde resin spheres as templates in aqueous solution, and then removal of the RF resins spheres by calcination in air at 450 °C for 4 h. The obtained TiO2 hollow spheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption analysis, and UV–visible diffuse reflectance spectroscopy. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of rhodamine B aqueous solution at ambient temperature under UV illumination. The results indicated TiO2 hollow nanostructures exhibit the excellent photocatalytic activity probably due to the unique hollow micro-architectures.  相似文献   

15.
Two square planar copper(II) complexes of tetradentate Schiff base ligands derived from aromatic aldehydes and 2,2′-dimethylpropandiamine (H2{salnptn(3-OMe)2}, H2{hnaphnptn}) have been prepared and used as catalysts for oxidation of cyclooctene and styrene with tert-butylhydroperoxide (TBHP). Oxidation of cyclooctene with TBHP gave cyclooctene oxide as the sole product, but in the case of styrene a mixture of styrene oxide and benzaldehyde has been obtained in ca. 1:3 molar ratio. It has been shown that the rate and selectivity of reaction depend to the electron-donor ability of substituents at the phenyl groups of the ligand and can be improved by introduction of π-electron-donating groups at the aromatic rings of salen-type Schiff bases. The structure of Cu{salnptn(3-OMe)2} has been determined by X-ray crystallography at 291 K with results generally in agreement with those previously reported. The results suggest that the symmetrical Schiff base ligands are bivalent anions with tetradentate N2O2 donors derived from the phenolic oxygen and azomethine nitrogen atoms.  相似文献   

16.
Core–shell BaMoO4@SiO2 nanospheres were prepared in reverse microemulsions and exhibited enhanced photoluminescence (PL) intensity as compared to that of the uncoated BaMoO4. Characterization was performed using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), and X-ray powder diffraction (XRD). It was found that the silica shell could increase the PL intensity, but the shell is not the thicker the better. The PL emission can be decomposed into three individual Gaussian components: two UV emissions at 308 nm and 369 nm and a visible emission at 448 nm. Such short emission wavelengths can be attributed to quantum size effect of the small BaMoO4 cores (~16 nm).  相似文献   

17.
Nanostructured CuO/ZnO composite oxide was prepared by a novel impregnation combustion method using copper nitrate and zinc oxide tetrapod. The X-ray diffraction patterns revealed that CuO/ZnO composite oxide was formed. The effects of different impregnation combustion parameters on the properties of composite were studied by field-emission scanning electron microscope (FESEM), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and UV–vis diffuse reflectance spectrum (DRS). The synthesis of ZnO–CuO nanocomposites through impregnation of a zinc oxide tetrapod with copper nitrate aqueous sodium carbonate solutions is reported. During thermal treatment the samples evolve toward the formation of nanocrystalline ZnO particles (zincite phase) dispersed onto tenorite, CuO annealed at 450 °C. XRD patterns of the precursors calcined at 450 °C showed the formation of the zincite–tenorite phases. Field emission scanning electron microscopy (FESEM) exhibited loosely agglomerated hexagonal particles with uniform morphology having a size around 50 nm.  相似文献   

18.
《Ceramics International》2016,42(8):9851-9857
Because of their potential applications in gas sensing and catalysis, reduced graphene oxide (RGO) and ZnO have been the focus of much recent attention. However, few reported materials have been produced via the combination of hierarchical ZnO structures with RGO to achieve high sensing performances. In this paper, a hydrothermal method was used to synthesize hierarchical porous ZnO nanoflowers, which were then combined with graphene to enhance their sensing performances. The rapid detection of 1 ppm NO2 was achieved at 174 °C. The morphologies and structures of these materials were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Photoluminescence measurements and X-ray photoelectron spectroscopy were also used to investigate the mechanism of gas sensing by these materials.  相似文献   

19.
NaTaO3 nanoparticles were prepared by an ultrasonic method, and Pd was deposited onto the surface of NaTaO3 via photoassisted deposition. The resulting samples were characterised by X-ray diffraction, ultraviolet and visible spectroscopy, photoluminescence emission spectroscopy, transmission electron microscopy, extended X-ray absorption fine structure analysis, and surface area measurements. The catalytic performance of the samples in the photoreduction of nitrate under visible light was determined. The UV–vis analysis indicated that a red shift occurred after Pd was loaded onto NaTaO3. The maximum reduction efficiency was 100%, which was obtained using 0.6 wt% Pd/NaTaO3 after a reaction time of 50 min.  相似文献   

20.
《Ceramics International》2015,41(6):7729-7734
We report bead-like ZnO nanostructures for gas sensing applications, synthesized using multi-walled carbon nanotube (MWCNT) templates. The ZnO nanostructures are grown following a two-step process: in the first, ZnO nanoparticles are synthesized on MWCNTs by thermal evaporation of a Zn powder; and in the second, the hybrid nanostructures are heat-treated at 800 °C. Scanning and transmission electron microscopy images indicate that the bead-like ZnO nanostructures have surface protuberances with nanoparticle sizes ranging from 20 to 60 nm, and a well-crystallized hexagonal structure. Gas sensors based on multiple-networked bead-like ZnO showed considerably enhanced electrical responses and better stability to both oxidizing (NO2) and reducing (CO) gases compared with previously reported nanostructured gas sensors, even if the response to CO gas was slow to increase. Both the NO2 and CO gas sensing properties increased dramatically when the working temperature was increased up to 300 °C. The response sensitivities measured were 2953%, 5079%, 9641%, 3568%, and 3777% to 20 ppm NO2 at 200, 250, 300, 350 and 400 °C, respectively. For CO gas on the other hand, the response sensitivities were 107%, 110%, 114%, 118%, and 122% at 5, 10, 20, 50, and 100 ppm concentrations, respectively. For concentrations between 5 and 20 ppm, the recovery time of the oxidizing gas was much shorter than the response time. The origin of the NO2/CO gas sensing mechanism of the bead-like ZnO nanostructures is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号