首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-dimensional (2D) transient heat conduction problems with/without heat sources in a rectangular domain under different combinations of temperature and heat flux boundary conditions are studied by a novel symplectic superposition method (SSM). The solution process is within the Hamiltonian system framework such that the mathematical procedures in the symplectic space can be implemented, which provides an exceptional direct rigorous derivation without any assumptions or predetermination of the solution forms compared with the conventional inverse/semi-inverse methods. The distinctive advantage of the SSM offers an access to new analytic heat conduction solutions. The results obtained by the SSM agree well with those obtained from the finite element method (FEM), which confirms the accuracy of the SSM.  相似文献   

2.
二阶非定常多宗量热传导反问题的正则解   总被引:1,自引:0,他引:1  
薛齐文  杨海天 《力学学报》2007,39(6):774-780
引入Bregman距离函数及其加权函数作为正则项,应用Tikhonov正则 化方法,对二阶非定常多宗量热传导反问题进行求解. 利用测量信息和计算信息构造最小二 乘函数,将多宗量反演识别问题转化为一个优化问题. 空间上采用8节点等参元进行离散, 时域上采用时域精细算法进行离散,建立了二阶非定常多宗量热传导问题的有限元正/反演数 值模型. 该模型不仅考虑了非均质和参数分布的影响,而且也便于正反演问题的敏度分析, 可对导热系数和边界条件等宗量进行有效的单一和组合识别. 给出了相关的数值验证,对信 息测量误差以及不同正则项的计算效率作了探讨. 数值结果表明,该方法能够对二阶非定常 多宗量热传导反问题进行有效的求解,并具有较高的计算精度.  相似文献   

3.
热传导问题灵敏度分析的伴随法   总被引:5,自引:1,他引:5  
在热传导灵敏度分析的直接法的研究基础上,进一步探讨了稳态和瞬态热传导问题灵敏度分析的伴随法.推导了伴随法的计算列式,对于瞬态热传导问题,研究了瞬态约束处理的关键点方法,并提出伴随方程的精细积分解法。算例表明,稳态问题灵敏度计算,伴随法与直接法的结果是一致的;瞬态问题灵敏度计算,两种方法的精度相当。  相似文献   

4.
The inverse problem of determining time-variable surface heat flux in a plane wall, with constant or temperature dependent thermal properties, is numerically studied. Different kinds of incident heat flux, including rectangular waveform, are assumed. The solution is numerically solved as a function estimation problem, so that no a priori information for the functional waveforms of the unknown heat flux is needed. In all cases, a solution in the form of a piece-wise function is used to approach the incident flux. Transient temperature measurements at the boundary, from the solution of the direct problem, served as the simulated experimental data needed as input for the inverse analysis. Both direct and inverse heat conduction problems are solved using the network simulation method. The solution is obtained step-by-step by minimising the classical functional that compares the above input data with those obtained from the solution of the inverse problem. A straight line of variable slope and length is used for each one of the stretches of the desired solution. The influence of random error, number of functional terms and the effect of sensor location are studied. In all cases, the results closely agree with the solution.  相似文献   

5.
基于遗传算法的混凝土三维非稳态温度场反分析   总被引:9,自引:0,他引:9  
大体积混凝土结构施工期间的合理温度控制问题非常重要,而精确进行温度计算所需的一些材料参数往往不易直接测得,需要根据一些易测得的量进行反求。本文基于三维瞬态温度场有限元求解理论与反问题理论,建立了混凝土三维瞬态温度场反问题求解数值模型。运用遗传算法寻求非线性反演问题全局最优解,只需要若干点温度实测值便可实现混凝土多个热学参数如绝热温升、导温、导热系数及热交换系鼓等的同时反演,算例对本文反演方法的反演精度及数值稳定性给出了满意的证明。  相似文献   

6.
The Non-uniform rational B-spline(NURBS)enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this paper.The scaled boundary finite element method is a semi-analytical technique,which weakens the governing differential equations along the circumferential direction and solves those analytically in the radial direction.In this method,only the boundary is discretized in the finite element sense leading to a reduction of the spatial dimension by one with no fundamental solution required.Nevertheless,in case of the complex geometry,a huge number of elements are generally required to properly approximate the exact shape of the domain and distorted meshes are often unavoidable in the conventional finite element approach,which leads to huge computational efforts and loss of accuracy.NURBS are the most popular mathematical tool in CAD industry due to its flexibility to fit any free-form shape.In the proposed methodology,the arbitrary curved boundary of problem domain is exactly represented with NURBS basis functions,while the straight part of the boundary is discretized by the conventional Lagrange shape functions.Both the concepts of isogeometric analysis and scaled boundary finite element method are combined to form the governing equations of transient heat conduction analysis and the solution is obtained using the modified precise integration method.The stiffness matrix is obtained from a standard quadratic eigenvalue problem and the mass matrix is determined from the low-frequency expansion.Finally the governing equations become a system of first-order ordinary differential equations and the time domain response is solved numerically by the modified precise integration method.The accuracy and stability of the proposed method to deal with the transient heat conduction problems are demonstrated by numerical examples.  相似文献   

7.
In this paper, solution of inverse problems in heat conduction transient fields is investigated. For this purpose, a new time-domain version of linear sampling method (TDLSM) is developed for cavity detection in a heat conductor. The linear sampling method (LSM) is an effective approach to image the geometrical features of unknown targets. Although this method has been used in the context of inverse scattering problems such as solid, acoustics, and electromagnetism, there is no specific attempt to apply this method to identification of cavities in heat conductors. This study emphasizes the implementation of the LSM in the time-domain fields using finite element method. A set of numerical simulations on two-dimensional transient heat conduction problems is presented to highlight many effective features of the proposed TDLSM fast qualitative identification method.  相似文献   

8.
刘硕  方国东  王兵  付茂青  梁军 《力学学报》2018,50(2):339-348
求解含裂纹等不连续问题一直是计算力学的重点研究课题之一,以偏微分方程为基础的连续介质力学方法处理不连续问题时面临很大的困难. 近场动力学方法是一种基于积分方程的非局部理论,在处理不连续问题时有很大的优越性. 本文提出了求解含裂纹热传导问题的一种新的近场动力学与有限元法的耦合方法. 结合近场动力学方法处理不连续问题的优势以及有限元方法计算效率高的优势,将求解区域划分为两个区域,近场动力学区域和有限元区域. 包含裂纹的区域采用近场动力学方法建模,其他区域采用有限元方法建模. 本文提出的耦合方案实施简单方便,近场动力学区域与有限元区域之间不需要设置重叠区域. 耦合方法通过近场动力学粒子与其域内所有粒子(包括近场动力学粒子和有限元节点)以非局部方式连接,有限元节点与其周围的所有粒子以有限元方式相互作用. 将有限元热传导矩阵和近场动力学粒子相互作用矩阵写入同一整体热传导矩阵中,并采用Guyan缩聚法进一步减小计算量. 分别采用连续介质力学方法和近场动力学方法对一维以及二维温度场算例进行模拟,结果表明,本文的耦合方法具有较高的计算精度和计算效率. 该耦合方案可以进一步拓展到热力耦合条件下含裂纹材料和结构的裂纹扩展问题.   相似文献   

9.
Algorithm of retrieving the heat transfer coefficient (HTC) from transient temperature measurements is presented. The unknown distributions of two types of boundary conditions: the temperature and heat flux are parameterized using a small number of user defined functions. The solutions of the direct heat conduction problems with known boundary temperature and flux are expressed as a superposition of auxiliary temperature fields multiplied by unknown parameters. Inverse problem is formulated as a least squares fit of calculated and measured temperatures and is cast in a form of a sum of two objective functions. The first results originates from an inverse problem for retrieving the boundary temperature the second comes from the inverse problem for reproducing the boundary heat flux. The final form of the objective function is obtained by enforcing constant in time value of the heat transfer coefficient. This approach leads to substantial regularization of the results, when compared with the standard technique, where HTC is calculated from separately reconstructed temperature and heat flux on the boundary. The validation of the numerical procedure is carried out by reconstructing a known distribution of the HTC using simulated measurements laden by stochastic error. The proposed approach is also used to reconstruct the distribution of the HTC in a physical experiment of heating a cylindrical sample using an impinging jet.  相似文献   

10.
The problem of appropriate location of the sensors for identification of ingot – mould thermal resistance during continuous casting of metals is the subject of the paper. Analysed problem belongs to the group of inverse problems. The present work shows also the method of identification of unknown thermal resistance using the temperature measurements at the number of sensors located in the wall of the mould. The influence of the location of the sensors on the results of identification is analysed. The best location of the sensors results from the sensitivity analysis for the steady-state inverse heat conduction problem. Validation of the proposed inverse method is realized by comparison of the results taken from solution of inverse and direct problems. Several numerical examples are presented and analysed.  相似文献   

11.
In this paper, we consider the efficient estimation of local boiling heat fluxes from transient temperature measurements in the heater close to the heater surface. For accurate prediction, heat flux estimation is formulated as a transient three-dimensional (3D) inverse heat conduction problem (IHCP). This inverse problem is ill-posed and cannot be treated straightforwardly by established numerical methods. In order to obtain a regularized stable solution, a large-scale time-dependent PDE-constrained optimization problem has to be solved and an appropriate stopping criterion for the termination of the iterative solution process has to be chosen. Since the boiling heat flux is non-uniformly distributed on the heater surface due to the strong local activity of the boiling process, the use of a fixed uniform spatial discretization is not efficient. Instead, an adaptive mesh refinement strategy can be used to obtain an appropriate discretization which significantly reduces the total computational effort. In this work, we present an automatic algorithm incorporating an adaptive mesh refinement via a heat flux-based a-posteriori error estimation technique. The suggested algorithm can cope with both spatially point-wise or highly resolved temperature observations efficiently. It is applied to real measurement data obtained from two different types of pool boiling experiments. The numerical results show that the computational effort can be reduced significantly for given estimation quality. This adaptive IHCP solution technique can be also viewed as an efficient soft sensor to deduce unmeasurable local boiling heat fluxes.  相似文献   

12.
The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.  相似文献   

13.
引入Bregman距离构造同伦函数,建立了二阶非定常多宗量热传导反问题的一种求解模式,可对导热系数和边界条件等宗量进行识别。时域上采用精细算法,建立了便于敏度分析的有限元正/反演模型,对各宗量进行有效的组合识别。对信息测量误差和初值选取作了初步探讨,数值验证取得了满意的结果。  相似文献   

14.
数值流形方法(NMM)因其特有的双覆盖系统(数学覆盖和物理覆盖)在域离散方面具有独特的优势,而精细时间积分法则具有精度高、无条件稳定、无振荡以及计算结果不依赖于时间步长等特点。发展了用于研究二维瞬态热传导问题的精细积分NMM。结合待求问题的控制方程和边界条件,并基于修正变分原理导出了NMM的总体方程,给出了求解此类时间相依方程的精细时间积分及空间积分策略,选取了两个典型算例对方法的有效性进行了验证,结果表明本文方法可以高效高精度地求解瞬态热传导问题。  相似文献   

15.
This paper is concerned with a method for solving inverse heat conduction problem. The method is based on the controlled random search (CRS) technique in conjunction with modified Newton–Raphson method. The random search procedure does not need the computation of derivative of the function to be evaluated. Therefore, it is independent of the calculation of the sensitivity coefficient for nonlinear parameter estimation. The algorithm does not depend on the future-temperature information and can predict convective heat transfer coefficient with random errors in the input temperature data. The technique is first validated against an analytical solution of heat conduction equation for a typical rocket nozzle. Comparison with an earlier analysis of inverse heat conduction problem of a similar experiment shows that the present method provides solutions, which are fully consistent with the earlier results. Once validated, the technique is used to investigate another estimation of heat transfer coefficient for an experiment of short duration, high heating rate, and employing indepth temperature measurement. The CRS procedure, in conjunction with modified Newton–Raphson method, is quite useful in estimating the value of the convective heat-transfer coefficient from the measured transient temperature data on the outer surface or imbedded thermocouple inside the rocket nozzle. Some practical examples are illustrated, which demonstrate the stability and accuracy of the method to predict the surface heat flux.  相似文献   

16.
引入Bregman距离加权函数,建立了多宗量瞬态热传导反演的一种求解模式.时域上采用精细算法,分别建立了便于敏度分析的有限元正/反演模型,应用同伦算法进行反问题求解,对导热系数和边界条件等宗量进行有效的组合识别.对信息误差和计算效率作了探讨,并给出了相应的数值验证.  相似文献   

17.
In this paper, the authors introduce a robust numerical technique for radiation–conduction heat transfer in the high temperature fields of gas turbine combustors. The conduction and radiation effects are analyzed by a differential and an integral equation, respectively. Using discrete ordinates for the angular discretization of the integral equation for the radiation effects and a Galerkin discretization for the heat equation, the authors propose a fast multilevel algorithm to solve the fully discretized problem. The algorithm uses the same mesh hierarchy for both radiation and conduction effects, but with two different smoothing operators. Numerical results are shown for test problems in three space dimensions, and comparisons to other methods are also given.  相似文献   

18.
通过一种时域自适应算法,建立了求解变速移动荷载下梁的多宗量反问题的数值模型,可同时识别移动荷载和梁的物性参数.正问题采用时域自适应算法和FEM建模,并可由此方便地推导敏度公式;在反问题求解中采用Levenberg-Marquardt法,计算表明该方法具有较好的抗不适定性.通过两个算例,对所提算法进行了数值验证,并探讨了噪声和测点的变化对反演结果的影响,结果令人满意.  相似文献   

19.
The 3-D boundary integral equation is derived in terms of the reciprocal work theorem and used along with the 2.5-D Green’s function developed in Part I [Lu, J.F., Jeng, D.S., Williams, S., submitted for publication. A 2.5-D dynamic model for a saturated porous medium: Part I. Green’s function. Int. J. Solids Struct.] to develop the 2.5-D boundary integral equation for a saturated porous medium. The 2.5-D boundary integral equations for the wave scattering problem and the moving load problem are established. The Cauchy type singularity of the 2.5-D boundary integral equation is eliminated through introduction of an auxiliary problem and the treatment of the weakly singular kernel is also addressed. Discretisation of the 2.5-D boundary integral equation is achieved using boundary iso-parametric elements. The discrete wavenumber domain solution is obtained via the 2.5-D boundary element method, and the space domain solution is recovered using the inverse Fourier transform. To validate the new methodology, numerical results of this paper are compared with those obtained using an analytical approach; also, some numerical results and corresponding analysis are presented.  相似文献   

20.
This paper develops a precise discretized algorithm in the time domain solving hyperbolic and parabolic heat conduction problems with radiative boundary condition. By expanding variables at a discretized time interval, FEM based recurrent formulae are derived, by virtue of which, a self-adaptive computing procedure, without requirement of iteration for the non-linear solutions, can be carried out for different sizes of time steps. Numerical validation gives satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号