首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
碲化铋-碳纤维水泥基材料的制备及热电性能   总被引:1,自引:0,他引:1  
采用混掺和涂层两种方式制备碲化铋(Bi2Te3)-碳纤维水泥基材料,研究了Bi2Te3掺量和掺加方式对水泥基材料热电性能的影响,并建立了涂层掺加方式下水泥基材料的热电模型。结果表明,混掺Bi2Te3的碳纤维水泥基材料表现出极化效应,随着养护龄期的延长,极化效应减弱;掺加Bi2Te3可以显著改善碳纤维水泥基材料的热电性能,以Bi2Te3作为涂层的水泥基材料比混掺具有更好的热电性能;热电模型分别计算Bi2Te3涂层和碳纤维水泥薄片的Seebeck系数,表明Bi2Te3涂层具有较高的Seebeck系数,从而提高整体水泥基材料的热电性能。  相似文献   

2.
Bi2Te3基热电材料是室温下性能最好的热电材料。传统块体Bi2Te。基热电材料的热电性能不高,而纳米Bi2Tes基热电材料可以实现电、声输运特性的协同控制,从而提高材料的热电性能。介绍了几种纳米Bi2Te3。基热电材料不同的湿化学制备方法,比较了各种方法的优缺点,并展望了其发展方向。  相似文献   

3.
Bi2Te3基热电材料由于在微电子、光电子等高技术领域具有潜在的应用前景,从而得到了人们的广泛关注.低维Bi2Te3基热电材料由于具有特殊的量子限制效应,已成为提高热电性能的有效途径.近年来,研究者非常重视Bi2Te3基热电薄膜的制备及性能研究,并做了大量相关的研究工作,许多制备方法也相继出现,并获得了高质量的Bi2Te3基热电薄膜.  相似文献   

4.
热电材料的低维化可以改善材料电输运与热传输的矛盾,特别是一维纳米热电材料明显的晶体各向异性和强烈的量子禁闭效应,可大幅度提高材料的热电优值和热电转换效率。Bi2Te3是制造低温热电材料的最常用材料,在温差发电和半导体制冷方面具有广阔的商业应用前景。以一维Bi2Te3基纳米热电材料的制备技术为评述线索,重点论述一维Bi2Te3基纳米热电材料形貌参数(包括直径、长径比)、晶面取向等微观结构的调控方法、生长机理以及显微结构对热电性能的影响规律。指出发展新的一维Bi2Te3基纳米热电材料结构控制方法,研究一维纳米热电材料的定向排布及组装技术,从更深层次揭示一维结构与热电性能的关系,以及开发一维Bi2Te3基纳米热电材料在各领域的实际应用是未来研究的发展方向。  相似文献   

5.
在分析块体Bi2Te3基热电材料性能优化设计思路的基础上,重点探讨了成分优化、结构优化、合成优化及成型优化中提高块体Bi2Te3基热电材料性能的方法。提出了一套值得探讨的优化设计方案,展望了Bi2Te3基热电材料在温差发电和半导体制冷领域颇具潜力的应用前景。  相似文献   

6.
采用真空熔炼及热压烧结方法制备了Na和Ga共掺杂n型Bi2Te2.7Se0.3热电材料。XRD结果表明,Na0.04Bi1.96-xGaxTe2.7Se0.3块体材料的XRD图谱与Bi2Te2.7Se0.3的图谱对应一致。通过EDAX技术对Na0.04Bi1.96-xGaxTe2.7Se0.3块体材料的成分进行了分析,无氧化现象。在298~523K温度范围内,在垂直于热压方向对样品的电热输运性能进行了测试分析,结果表明Na和Ga共掺杂可以有效地提高Bi2Te2.7Se0.3的载流子浓度,从而使电导率得到明显改善,但同时Seebeck系数有不同程度的损失。由于晶格热导率减小,Na掺杂及共掺杂样品Na0.04Bi1.96-xGaxTe2.7Se0.3(x=0.04)均使热导率降低。当Na掺杂浓度为0.04时,随着Ga掺杂浓度的增加,热导率呈现递增的现象,Na和Ga共掺杂样品Na0.04Bi1.96-xGaxTe2.7Se0.3(x=0.04)的热电优值获得了较明显的提高,在398K时的最大ZT值为0.75。  相似文献   

7.
阐述了Bi2Te3热电材料的基本特性,评述了Se,TeL,SiC,RE(La,Ce等)的掺杂对BiTe材料热电性能的影响,以及国内外掺杂Bi-Te基热电材料的研究进展.介绍了Bi-Te基合金的制备技术的发展.最后指出通过材料的结构优化、组分调整及制备技术的改进,可以进一步提高材料的热电性能,得到理想的热电优值.  相似文献   

8.
纳米结构Bi2Te3基热电材料的溶剂热合成   总被引:3,自引:0,他引:3  
本文评述了近年来溶剂热合成纳米结构Bi2Te3的研究进展,重点讨论了合成过程中的化学反应和晶体生长机制,特别是Bi2Te3纳米管的合成、形成机制和组织结构特征.介绍了含纳米结构Bi2Te3的Bi2Te3基同质纳米复合结构热电材料,其热电优值ZT达到1.25,远高于基体材料,也超过目前的块状先进Bi2Te3基热电材料.  相似文献   

9.
采用真空熔炼、机械球磨及放电等离子烧结技术(SPS)制备得到了(Ag2Te)x(Bi0.5Sb1.5Te3)1-x(x=0,0.025,0.05,0.1)系列样品,性能测试表明,Ag2Te的掺入可以显著改变材料的热电性能变化趋势,掺杂样品在温度为450~550K范围内具有较未掺杂样品更优的热电性能.适当量的Ag2Te掺入能够有效地提高材料的声子散射,降低材料的热导率.在测试温度范围内,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95具有最低的晶格热导,室温至575K范围内保持在0.2~0.3W/(m·K)之间,在575K时,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95试样具有最大热电优值ZT=0.84,相较于未掺杂样品提高了约20%.  相似文献   

10.
SPS法制备Bi_2Te_3基热电合金的热电性能   总被引:2,自引:0,他引:2  
用粉末冶金工艺结合SPS烧结制备了p型(Bi0.2Sb0.8)2Te3和n型Bi2(Te0.975Se0.025)3多晶半导体合金,研究烧结工艺对其热电性能的影响.结果表明,室温下,p型(Bi0.2Sb0.8)2Te3材料的热电优值Z为3.25×10<'-3K<'-1,n型Bi2(Te0.975Se0.025)3材料的热电优值Z为2.21×10<'-3K<'-1.  相似文献   

11.
采用常温硫酸镍电镀溶液研究了不同阴极电流和不同电镀时间对P型Bi2Te3基热电材料电镀镍层的显微结构和结合性能的影响。对镍层的形貌、厚度、成分以及与Bi2Te3基体之间的接触电阻进行了表征。研究结果表明在选定实验条件下,电流密度为1.0A/dm2,沉积时间为6分钟时界面电阻为最小值1.804Ω。  相似文献   

12.
介绍了热电材料的基本原理与应用情况,总结了现阶段提高Mg2Si基热电材料热电性能的途径:包括对Mg2Si材料进行多种元素的掺杂;制备低维数材料、纳米材料与超晶格结构材料。评述了Mg2Si基热电材料在掺杂改性和制备方面的研究进展。分别阐述了掺杂Ge、Sn、Pb、Te、Sb、Bi、Ag等几种元素对Mg2Si热电性能的影响。对溶体生长法、固相烧结法、机械合金化、放电等离子烧结法与电场激活压力辅助合成法的优缺点进行了评价,通过对比最后指出了场激活压力辅助合成法是新的合成Mg2Si节能和高效的新的制备方法。  相似文献   

13.
分别采用热压、低电场强度和高电场强度3种工艺烧结制备Bi1.2Sb4.8Te9热电材料,测试、对比分析3组试样的微观结构和热电传输性能。结果表明,采用电场加热方式烧结可有效提高材料的致密度,且在大电场强度工艺下晶粒择优取向。电场可使材料内缺陷减少,载流子浓度下降,同时提高载流子迁移率,使材料综合电性能提高,晶粒择优取向有助于降低材料热导率,这些都有助于热电材料ZT值的提高。  相似文献   

14.
采用真空熔炼及热压方法制备了K和Al共掺杂P型Bi0.5Sb1.5Te3热电材料。XRD分析结果表明,K0.04Bi0.5Sb1.5-x Alx Te3块体材料的XRD图谱与Bi0.5Sb1.5Te3的图谱完全对应,SEM形貌分析表明材料具有一定的层状结构和微孔。K和Al共掺杂提高了Bi0.5Sb1.5Te3在室温附近的Seebeck系数。除了K0.04Bi0.5Sb1.34Al0.12Te3样品的300K和400K以上的高温区,以及共掺杂样品的500K高温附近之外,K和Al共掺杂均使Bi0.5Sb1.5Te3材料的电导率降低。在300~500K温度范围内,K0.04Bi0.5Sb1.42Al0.04Te3样品的热导率均小于Bi0.5Sb1.5Te3的热导率。在300~350K温度范围内,K0.04Bi0.5Sb1.42Al0.04Te3样品的热电优值较Bi0.5Sb1.5Te3有较大幅度的提高。  相似文献   

15.
采用真空熔炼和热压烧结技术制备了K和Al共掺杂Bi2Te2.7Se0.3热电材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)对样品的物相结构和表面形貌进行了表征。XRD分析结果表明,K0.04Bi1.96-x Al x Te2.7Se0.3块体材料的XRD图谱与Bi2Te2.7Se0.3的XRD图谱对应一致,SEM形貌表明材料组织致密且有层状结构特征。K0.04Bi1.92-Al0.04Te2.7Se0.3合金提高了材料的Seebeck系数,K0.04Bi1.88Al0.08Te2.7Se0.3和K0.04Bi1.84Al0.12Te2.7Se0.3大幅度提高了材料的电导率,通过K和Al部分替代Bi,使材料的热导率有不同程度的减小,在300~500 K温度范围内,K和Al共掺杂均较大幅度地提高了Bi2Te2.7Se0.3的热电优值。  相似文献   

16.
热电材料微观组织结构的纳米化有利于增强对声子的散射,降低材料热导率,从而提高热电材料的性能.采用水热合成方法制备了包含纳米管、纳米线等形态的Bi2Te3基纳米结构粉末.采用真空热压方法制备了含纳米结构粉末的Bi2Te3基纳米复合热电材料.实验结果表明,纳米复合热电材料具有高电导、低热导的优良性能特征.最大无量纲热电优值达到1.3左右,比同类区熔材料提高15%左右.模拟计算表明,用纳米复合材料制备的温差电池的单位面积最大输出功率为1100W·m-2,热电转换效率在8%以上,在余热发电应用领域具有实际应用经济价值.  相似文献   

17.
研究了Sn、Te掺杂对CrSb_2热电性能的不同影响。结果表明,Sn、Te掺杂引起的晶格畸变使电子浓度提高,Te替代Sb是n-型掺杂,而Sn替代Sb是p-型掺杂。由于补偿效应,CrSb_(1.99)Sn_(0.01)的电子浓度小于CrSb_(1.99)Te_(0.01)的电子浓度,导致Sn掺杂使CrSb_2的电阻率和热电势|S|降低的幅度较小。掺杂后声子杂质(Sn、Te)散射增强,CrSb_(1.99)Sn_(0.01)和CrSb_(1.99)Te_(0.01)的热导率都明显减小,而Te的原子量比Sn的大,散射作用更强,热导率减小的幅度更加明显。因此,Te掺杂改善了CrSb_2的热电性能,而Sn掺杂没有改善其性能。此外,由于Sn和Te的d轨道填满了电子而没有磁性,掺杂后样品的Neel温度没有明显改变.  相似文献   

18.
采用熔融法结合SPS烧结技术合成了SryCo4Sb12-xTex化合物, 并探讨了Te掺杂对化合物热电性能的影响. 采用XRD及EPMA确定了相组成及化学成分, 并测试了材料的高温热电性能. 实验结果表明, 虽然Te掺杂降低了Sr在CoSb3中的填充量, 但是与具有相近Sr填充量的基体相比, Te掺杂提高了材料的载流子浓度和电导率, 同时也提高了塞贝克系数; Te掺杂由于引入了电子-声子散射, 进一步降低了材料的晶格热导率, 并且随着Te掺杂量的增加, 晶格热导率的降低幅度提高; 对x=0.05的样品Sr0.18Co4Sb11.95Te0.05, 在850K时, 材料的最大ZT值接近1.0, 与具有相近填充量的基体材料相比, ZT值提高了35%.  相似文献   

19.
碲(Te)是一种良好的单质热电(TE)材料,具有很高的Seebeck系数和载流子迁移率,以及非常低的热导率。本工作采用热压法制备了Te以及Sb掺杂的Te多晶,采用垂直布里奇曼下降法制备了Te晶体,并对得到的晶体进行热电性能测试研究。结果表明:Te具有高的Seebeck系数以及电导率,Sb掺杂有效提高了Te的热电性能,由布里奇曼法制备的Te晶体的电导率表现出明显的各向异性。这主要归因于Te具有简并的能带、阶梯状的态密度分布和超大的声子散射相。然而这些有益于热电传输的特征又都源自于Te晶格中的孤对电子。本工作展示了孤对电子与各热电传输性能之间的联系,为热电参数解耦提供了一种新的方法,同时也为寻找优异的热电材料提供了思路。  相似文献   

20.
用机械球磨-热压法制备了Bi0.5Sb1.5Te3热电材料,分别研究了机械球磨时间对合成Bi0.5Sb1.5Te3合金相的影响和烧结温度对其热电性能的影响.结果表明Bi、Sb、、Te原始混合粉末高能球磨10 h以后,就可以完全合金化,生成Bi0.5Sb1.5Te3相.球磨10h的粉末分别在400、450和520℃下热压烧结成型,烧结样品的密度随烧结温度的增大而增加,Seebeck系数和电阻率随烧结温度的升高而降低  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号