首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residual stresses were characterised in a wire-feed additively manufactured titanium alloy component. A numerical simulation based on the inherent strain method was used to model residual stresses arising from the manufacturing process. The contour method was used to experimentally determine the residual stress field. High tensile residual stresses were seen at and around the interface of the substrate and the deposited metal. Compressive residual stresses were present in the substrate and at the top of the deposit. The satisfactory correlation was achieved between the results from the numerical simulation and the contour method, except for the location of the root of the deposit. The effect of pre-heating the sample substrate on the residual stress distribution is also discussed.  相似文献   

2.
A finite element approach based on Quick Welder software is developed to simulate welding temperature field and welding residual stress distribution in a 3D multi-pass girth-welded pipe model. The characteristics of welding residual stress distributions in a SUS304 stainless steel pipe induced by heating with a tungsten inert gas arc welding torch are investigated numerically. Meanwhile, an emphasis is focused on examining the welding residual stress distributions in and near the weld start/end location. Moreover, the residual stresses predicted by the present computational approach are compared with the measured data; and the comparison suggests that the numerical simulation method has basically captured the feature of welding residual stress distribution near the weld start/end region. The numerical simulation results show that both the hoop and the axial residual stresses near the weld start/end region have sharp gradients and are significantly different from those in the steady range.  相似文献   

3.
By conducting the numerical and experimental analysis, the influence of heat input on the microstructures and mechanical properties of laser welding GH4169 bolt assembly is systematically investigated. The weld formation, temperature field, and residual stress distribution during laser welding by using the finite element modeling are consistent with experimental results. The numerical simulation results show that the increase of heat input imparts lower residual stresses and higher temperature gradient. During the process of laser welding, the steepest temperature gradient and the peak residual stress arise in the fusion zone (FZ). In addition, the dissolution of γ″ and γ′ toward the fusion line increases in heat affected zone (HAZ), but only Laves phase is observed in FZ. With increasing heat input from 24 to 48 J mm−1, the ultimate tensile strength of welded joints decreases. Both the lowest microhardness values and tensile failure of GH4169 alloy laser welded joint are in FZ. Herein, it is that the relationship among the heat input, microstructures, and mechanical properties of GH4196 bolt assembly in laser welding is systematically established, which will be of guiding significance for the selection of welding parameters in aerospace.  相似文献   

4.
采用组合热源模型对Al-Li合金电子束焊接温度场分布进行数值模拟分析,通过热-力耦合,模拟计算得到接头区域的残余应力分布.结果表明,Al-Li合金电子束焊接温度场沿焊接方向呈椭圆形分布,电子束热源中心的温度最高,其附近区域的等温线分布密集,随着与热源中心的距离增大,等温线分布逐渐稀疏,焊缝区存在较大的温度梯度,较好地模拟出了电子束焊缝的钉形分布特征.接头的残余应力分布模拟结果显示,残余应力主要集中于焊缝区,由于修饰焊的热作用,焊缝上部具有相对较大的应力值.利用模拟计算得到的结果进行焊接工艺及参数优化,焊接工艺试验表明,试验焊缝形貌与模拟熔池形貌相吻合,进一步验证了模拟计算结果的可靠性.  相似文献   

5.
Welding mechanical behaviors including residual stress and distortion are highly non-linear phenomena in nature. When numerical simulation methods such as thermal elastic plastic finite element method (FEM) are used to quantitatively predict welding residual stress and distortion, a long computational time is required especially for multi-pass joints. In real engineering structures, many weldments have large dimensions and complex shapes, and they are usually assembled by a multi-pass welding process. Therefore, it is necessary to develop time-effective computational approaches for practice engineering analysis. In this study, a method based on variable length heat sources was proposed for the analysis of thermo-mechanical behaviors for multi-pass joints. The welding residual stress field in a dissimilar metal J-groove joint with axis-symmetric geometrical shape, which was performed by a semi-circle balanced welding process, was investigated using the proposed method. The simulation results were compared with the measured data as well as the simulation results computed by a moving heat source. Meanwhile, the instantaneous line heat source was also employed to estimate the welding residual stresses in the same joint in an extreme case. The influences of heat source model (type) on welding residual stress and distortion were discussed.  相似文献   

6.
On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of p  相似文献   

7.
This paper investigates distortions and residual stresses induced in butt joint of thin plates using Metal Inert Gas welding. A moving distributed heat source model based on Goldak’s double-ellipsoid heat flux distribution is implemented in Finite Element (FE) simulation of the welding process. Thermo-elastic–plastic FE methods are applied to modelling thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations, fusion zone and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress is obtained. FE analysis results of welding distortions are compared with existing experimental and empirical predictions. The welding speed and plate thickness are shown to have considerable effects on welding distortions and residual stresses.  相似文献   

8.
Abstract: Experimental, finite element analysis and statistical studies of residual stresses in edge welded type 316H stainless steel beams are presented. The experimental stress measurements were previously performed by different laboratories using neutron and synchrotron X‐ray diffraction. An analytical model to describe the magnitude and distribution of the residual stresses is presented. Results from finite element analyses are also provided. It is found that there is general agreement between the trends in the residual stresses derived from analysis and measurement. However, the scatter in results is substantial and a statistical framework for treating residual stresses using Bayesian statistics based on experimental and simulation results is described. The Bayesian analytical approach that uses the analytical model as a reference permits the model to be applied to circumstances outside the experimental conditions.  相似文献   

9.
Peening processes can be used as a fatigue enhancement treatment for metallic structures by locally introducing compressive residual stresses. A combined experimental–numerical study on a single-impact process with a drop tower on the aluminium alloy AA5754, representing the elementary process of mechanical peening, has been performed to investigate different impact parameters on the residual stress profile. Residual stresses have been measured using high-energy X-Ray diffraction. A three-dimensional finite element model is used to predict the residual stresses numerically. The elastic strain components from the numerical results are used to calculate residual stresses by assuming either a plane stress or a plane strain state for different specimen thickness to assess the validity of respective assumption. The validity of the numerical simulation is evaluated based on comparisons of the elastic strain profiles and the percentage loss in kinetic energy of the steel ball due to the impact for four different energies, showing overall a good agreement in the experimental–numerical comparisons.  相似文献   

10.
The residual stresses that occur as a result of nonhomogeneous heating and cooling during welding may have a significant effect on the accumulation of fatigue damage in a welded joint. The problem is complicated not because of the complex spatial distribution of the residual stress fields, but because those fields typically change under an applied load. The present study considers the effect of residual stresses on fatigue damage accumulation in a welded joint subjected to stochastic loading.The influence of residual stresses on stochastic fatigue damage accumulation is accounted for by a simple approach based on an elastic–perfectly-plastic material model and the Gerber correction factor. The model assumes that the residual stress remaining at the critical location depends on the largest nominal stress ever endured by a welded joint. The model predicts that the residual stresses during stochastic loading randomly decay to zero. The effect of material yielding is additionally investigated by considering an elastic–plastic material model with linear kinematic hardening. The residual stresses in this case are computed through Monte Carlo simulations. It is demonstrated that the effect of material hardening is to reduce the rate of residual stress decay and thus to accelerate the rate of fatigue damage accumulation.  相似文献   

11.
U肋加劲板焊接残余应力数值模拟分析   总被引:5,自引:0,他引:5  
赵秋  吴冲 《工程力学》2012,29(8):262-268
通过数值模拟和实验方法对U 肋加劲板焊接残余应力进行了估算和分析,建立了三维热弹塑性有限元模型,采用生死单元法模拟焊缝填充和焊接热输入过程,实现了整个焊接过程中的动态应力和变形变化,得到了U肋加劲板的焊接温度场和应力场,分析了U 肋加劲板的焊接残余应力分布,并与残余应力测试试验结果比较.结果显示:U 肋加劲板近焊缝区残余拉应力达到材料屈服强度,母板远离焊缝区残余压应力平均值约为材料屈服强度的0.2 倍,其分布趋势与实验测试得到的残余应力分布比较接近,证明了所采用的焊接数值模拟方法的正确性.  相似文献   

12.
SDC99钢淬火过程中应力和组织演变的有限元模拟   总被引:1,自引:0,他引:1  
为了研究钢铁材料在淬火过程中内部组织和应力的变化,以自主研发的SDC99钢为研究对象,考虑相变潜热的影响,采用有限元方法对偏心圆环的淬火过程进行模拟仿真,并对淬火过程中模型的温度场、应力场和组织场的变化进行分析和研究.结果表明:经实验测定淬火过程中温度场及残余应力的分布与模拟结果吻合较好,偏心圆环上最大残余应力出现在45°及315°位置;模型硬度的分布与其马氏体含量分布趋势一致,模拟的硬度值略小于实测值.  相似文献   

13.
Laser shock processing is a recently developed surface treatment designed to improve the mechanical properties and fatigue performance of materials, by inducing a deep compressive residual stress field. The purpose of this work is to investigate the residual stress distribution induced by laser shock processing in a 2050-T8 aeronautical aluminium alloy with both X-ray diffraction measurements and 3D finite element simulation. The method of X-ray diffraction is extensively used to characterize the crystallographic texture and the residual stress crystalline materials at different scales (macroscopic, mesoscopic and microscopic).Shock loading and materials’ dynamic response are experimentally analysed using Doppler velocimetry in order to use adequate data for the simulation. Then systematic experience versus simulation comparisons are addressed, considering first a single impact loading, and in a second step the laser shock processing treatment of an extended area, with a specific focus on impact overlap. Experimental and numerical results indicate a residual stress anisotropy, and a better surface stress homogeneity with an increase of impact overlap.A correct agreement is globally shown between experimental and simulated residual stress values, even if simulations provide us with local stress values whereas X-ray diffraction determinations give averaged residual stresses.  相似文献   

14.
During laser surface melting of steel components, obtaining the desired distribution of microstructure and residual stresses with minimum distortion is essential for production goals and reliable service performance. In this study, a three-dimensional finite element based model, which is integrated into commercial finite element analysis (FEA) software SYSWELD by means of user subroutines, has been developed to simulate the wide-band laser surface melting (LSM) processing and predict temperature history and stress field with different laser scanning speed. In the proposed computational procedure, thermal, metallurgical transformation and mechanical aspects were taken into account, and the heat transfer analysis, the temperature dependent on material properties and a coupled transient thermo-mechanical analysis were used. Effects of laser scanning speed on melting temperature field and residual stress were investigated. The simulation results show that laser scanning speed changes have significant effects on melting residual stress. For experimental verification, laser surface melting of thin plate 42CrMo4 steel was achieved by a 5 kW continuous wave CO2 laser with laser scanning speed from 10 m/s to 30 m/s. The computational results are in good agreement with experimental measurements.  相似文献   

15.
Recent discoveries of stress corrosion cracking (SCC) in weldments including penetration nozzles at pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It is well known that welding residual stress is an important factor resulting in SCC in weldments. In the present work, both experimental method and numerical simulation technology are used to investigate the characteristics of welding residual stress distribution in penetration nozzles welded by multi-pass J-groove joint. An experimental mock-up is fabricated to measure welding residual stress at first. In the experiment, each weld pass is performed using a semi-circle balanced welding procedure. Then, a corresponding finite element models with considering moving heat source, deposition sequence, inter-pass temperature, temperature-dependent thermal and mechanical properties, strain hardening and annealing effect is developed to simulate welding temperature and residual stress fields. The simulation results predicted by the 3D model are generally in good agreement with the measurements. Meanwhile, to clarify the influence of deposition sequence on the welding residual stress, the welding residual stress field in the same geometrical model induced by a continuous welding procedure is also calculated. Finally, the influence of a joint oblique angle on welding residual stress is investigated numerically. The numerical results suggest that both deposition sequence and oblique angles have effect on welding residual stress distribution.  相似文献   

16.
Abstract— The paper discusses the results of fatigue crack growth rate tests conducted in the presence of residual stresses. Three different residual stress distributions, obtained by laser welds, were employed in order to characterize the crack propagation behaviour under different conditions, producing either an increase or a reduction of the stress intensity factor due to external loads. Test results are analysed by means of a non-linear numerical model (based on the weight function method) and a knowledge of the fatigue crack growth properties of the base material, free from residual stresses. The results of the analysis are discussed with reference to experimental trends, in order to clarify the predictive capabilities of the method and aspects needing further investigation.  相似文献   

17.
The residual stresses in laser shock peened (LSP) Inconel 718 Ni-base superalloy and their thermal relaxation behavior were investigated based on three-dimensional nonlinear finite element analysis. To account for the nonlinear constitutive behavior, the Johnson-Cook model has been employed and the model parameters for high strain rate response of IN718 are calibrated by comparison with recent experimental results. Based on the LSP simulation, the thermal relaxation behavior was studied through coupled thermal-structure analysis in LS-DYNA. More specifically, the effects of test temperature, exposure time and degree of initial plastic deformation are analyzed and discussed. It is observed that stress relaxation mainly occurs during the initial period of exposure, and the relaxation amplitude increases with the increase of applied temperature and as-peened plastic deformation. Based on the simulation results, an analytical model based on Zener-Wert-Avrami function is proposed to model the thermal residual stress relaxation.  相似文献   

18.
The discussion about nonuniform stress distribution around interference-fit joint is particular significance in the design of composite laminates structures. In order to investigate the stress distribution of interference-fit area around composite laminates joint, an analytical model is developed for stress distribution based on the Lekhnitskii's complex potential theory. The normal and tangential stresses of contact are achieved by the relationship of deformation between pin and hole. The effects of ply orientation and interference percentage on stress components distributions of each individual layer around symmetrical laminates joint are discussed. In order to verify the validity of the analytical model, extensive 3D finite element models are established to simulate the stress components of laminates interference-fit joint. The results show that the analytical model is valid, and the laminate property and ply orientation have a significant effect on stress distribution trend while interference percentage mainly affects stress magnitude.  相似文献   

19.
Cold expansion of fastener holes creates compressive residual stresses around the hole. This well‐known technique improves fatigue life by reducing tensile stress around the holes. However, cyclic loading causes these compressive residual stresses to relax, thus reducing their beneficial effect. Estimation of the fatigue life without considering the residual stress relaxation might lead to inaccurate results. In this research, numerical studies were carried out using 2D finite element (FE) models to determine the initial tangential and radial residual stress distributions generated by cold expansion and their relaxation under cyclic loading. To predict the stress relaxation, four nonlinear kinematic hardening models were applied in simulation of stress/strain path. The results obtained from the FE analysis were compared with available experimental results. A good agreement between the numerical and experimental results was observed.  相似文献   

20.
This paper focuses on the simulation of welding residual stresses and the action of explosion shock waves on welding residual stresses. Firstly, the distributions of welding temperature field and residual stress on a butt joint were numerically simulated with the sequentially coupled method. Secondly, the effect of explosion shock waves, produced by plastic strip-like explosive, on welding residual stress distribution was predicted with coupled Lagrange-ALE algorithm. It was implicated that explosion treatment could effectively reduce welding residual stresses. The simulation work lays a foundation for the further research on the rule of explosion treatment’s effect on welding residual stresses and the factors that may influence it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号