首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the notch and flank wear specific to a SiC whisker reinforced alumina tool in air jet assisted (AJA) turning of nickel-base superalloy Inconel 718 at high cutting speeds. An AJA machining experiment has revealed that the air jet applied to the tool tip in addition to coolant dramatically reduces the depth-of-cut notch wear. As a result, the width of flank wear, but not the size of notch wear, determined the life of a ceramic tool in AJA machining of Inconel 718. This is a reason for the large extension and small variation of the tool life when high speed AJA machining is adopted. The maximum tool life length reached 2160 m at a cutting speed of 660 m/min under the given cutting conditions. Finally, the mechanisms of the notch and flank wear of a SiC whisker reinforced alumina tool in AJA machining are discussed from the viewpoints of tribochemical reactions and tool wear anisotropy.  相似文献   

2.
Nickel-based superalloys such as Inconel 718 offer several advantages, including high-temperature strength and high corrosion resistance; this has led to a rapid increase in the demand for such materials, particularly in the aircraft industry. In contrast, these alloys are known to be among the most difficult-to-cut materials because of their mechanical and chemical properties, and tools used for this purpose have extremely short lifetimes. Recently, cubic boron nitride (CBN), which is the second hardest of all known materials, has received significant attention as a material for cutting tools and has already established itself in many fields of application. However, the performance of CBN tools is still insufficient for practical use, especially in the high-speed machining of Inconel 718. To overcome this problem, we first conducted orthogonal cutting experiments on Inconel 718 and performed cross-sectional observations of the CBN cutting tool in order to identify its wear mechanisms in continuous cutting operations under high-speed machining conditions (300 m/min). As a result, it was found that fatal tool failure occurs through crater and flank wear because of diffusion led by high cutting temperatures and subsequent chip adhesion to the tool flank face, accompanied by cutting edge chipping. Based on these results, a CBN cutting tool with a textured flank face was newly developed to improve the cutting tool life. Experimental: results showed that micro grooves generated on the flank face significantly suppressed the cutting edge chipping and remarkably extended the lifetime of the CBN tool during high-speed machining of Inconel 718.  相似文献   

3.
Inconel718是一种高强度耐热镍基合金,具有优良的高温强度、高温硬度和耐蚀性,在高温条件下能长期工作,已被广泛地应用于宇航工业、航空工业的涡轮发动机和相关零件的制造。分析Inconel718的机械性能、微观组织结构及其对切削加工性能的影响并进行了相关的试验验证,在试验数据的基础上,研究Inconel718中含碳量对切削过程中刀具磨损的影响。试验结果表明,Inconel718中含碳量在刀具后刀面磨损中起着非常重要的作用,Inconel718合金中含碳量越高,合金中所含的细微硬质夹杂物也越多,在切削过程中使刀具产生严重的后刀面磨粒磨损,从而降低材料的切削加工性。  相似文献   

4.
In this paper, a series of milling tests were carried out in order to identify the effects of cutting speed on cutting forces and tool wear when high-speed face milling Inconel 718 with Sialon ceramic tools. Both down-milling and up-milling operations were conducted. The cutting forces, tool wear morphologies, and the tool failure mechanisms in a wide range of cutting speeds (600–3,000 m/min) were discussed. Results showed that the resultant cutting forces firstly decrease and then increase with the increase of cutting speed. Under relatively lower cutting speeds (600 and 1,000 m/min), the dominant wear patterns is notching. Further increasing the speed to more than 1,400 m/min, the notching decreases a lot and flank wear becomes the dominant wear pattern. In general, at the same cutting speed, flaking on the rake face and notching on the flank face are more serious in down-milling operation than that in up-milling operation with the same metal removal volume. However, the surface roughness values for down-milling are lower than that for up-milling.  相似文献   

5.
The cutting tool wear degrades the quality of the product in the manufacturing process, for this reason an on-line monitoring of the cutting tool wear level is very necessary to prevent any deterioration. Unfortunately there is no direct manner to measure the cutting tool wear on-line. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission, etc. The main objective of this work is to establish a relationship between the acquired signals variation and the tool wear in high speed milling process; so an experimental setup was carried out using a horizontal high speed milling machine. Thus, the cutting forces were measured by means of a dynamometer whereas; the tool wear was measured in an off-line manner using a binocular microscope. Furthermore, we analysed cutting force signatures during milling operation throughout the tool life. This analysis was based on both temporal and frequential signal processing techniques in order to extract the relevant indicators of cutting tool state. Our results have shown that the variation of the variance and the first harmonic amplitudes were linked to the flank wear evolution. These parameters show the best behavior of the tool wear state while providing relevant information of this later.  相似文献   

6.
There has been significant work on establishing relationships between machining performance and the cutting parameters for various work materials. Recent trends in machining research show that major efforts are being made to understand the impact of various cooling/lubrication methods on machining performance and surface integrity characteristics, all aimed at improving process and product performance. This study presents the experimental results of cryogenic machining of Inconel 718, a high-temperature aerospace alloy, and comparison of its performance in dry and minimum quantity lubrication machining. Experimental data on force components, progressive tool wear parameters such as flank wear, notch wear, crater wear, cutting temperature, chip morphology, and surface roughness/topography of machined samples are presented. New findings show that cryogenic machining is a promising research direction for machining of high-temperature aerospace alloy, Inconel 718, as it offers improved machining performance in terms of reduced tool wear, temperature, and improved surface quality. It was also found that the number of nozzles in cryogenic machining plays a vital role in controlling cutting forces and power consumption in cryogenic machining of Inconel 718.  相似文献   

7.
This paper presented a study of the relationship between cutting force and tool flank wear of solid carbide tool during the wet end milling Ti6Al4V. The modeling of 3D cutting force in end milling considering tool flank wear was discussed, which showed that for the given cutting conditions, tool geometries, and workpiece material, cutting force under the tool flank wear effect can be predicted easily and conveniently. In addition, the experimental work of end milling Ti6Al4V with solid carbide tool was developed to investigate the relationship between cutting force and tool flank wear, and comparison between experimental results and predicted results was discussed. The results showed that the proposed mathematical model can help to predict 3D cutting force under the tool flank wear effect with high accuracy.  相似文献   

8.
High-speed machining has been receiving growing attention and wide applications in modern manufacture. Extensive research has been conducted in the past on tool flank wear and crater wear in high-speed machining (such as milling, turning, and drilling). However, little study was performed on the tool edge wear??the wear of a tool cutting edge before it is fully worn away??that can result in early tool failure and deteriorated machined surface quality. The present study aims to fill this important research gap by investigating the effect of tool edge wear on the cutting forces and vibrations in 3D high-speed finish turning of nickel-based superalloy Inconel 718. A carefully designed set of turning experiments were performed with tool inserts that have different tool edge radii ranging from 2 to 62???m. The experimental results reveal that the tool edge profile dynamically changes across each point on the tool cutting edge in 3D high-speed turning. Tool edge wear increases as the tool edge radius increases. As tool edge wear dynamically develops during the cutting process, all the three components of the cutting forces (i.e., the cutting force, the feed force, and the passive force) increase. The cutting vibrations that accompany with dynamic tool edge wear were analyzed using both the traditional fast Fourier transform (FFT) technique and the modern discrete wavelet transform technique. The results show that, compared to the FFT, the discrete wavelet transform is more effective and advantageous in revealing the variation of the cutting vibrations across a wide range of frequency bands. The discrete wavelet transform also reveals that the vibration amplitude increases as the tool edge wear increases. The average energy of wavelet coefficients calculated from the cutting vibration signals can be employed to evaluate tool edge wear in turning with tool inserts that have different tool edge radii.  相似文献   

9.
This paper focuses on the analysis of tool wear mechanisms in finishing turning of Inconel 718, one of the most used Ni alloys, both in wet and dry cutting. Cemented carbides, ceramics and CBN tools are suitable for machining Ni alloys; coated carbide tools are competitive for machining operations of Ni alloys and widely used in industry. Commercial coated carbide tools (multilayer coating TiAl/TiAlN recommended for machining Ni alloys) were studied in this work. The feasibility of two inserts tested for dry cutting of Inconel 718 has been shown in the work. Experimental test were performed in order to analyze wear patterns evolution. It was found great influence of side cutting edge angle in tool wear mode.  相似文献   

10.
In this paper, by joining three non-traditional machining methods — plasma-enhanced machining, cryogenic machining, and ultrasonic vibration assisted machining — a new hybrid machining technique for machining of Inconel 718 is presented. Cryogenic machining reduces the temperature in the cutting zone, and therefore decrease tool wear and increases tool life, while plasma-enhanced machining helps to increase the temperature in the workpiece to make it softer. Also, applying ultrasonic vibrations to the tool helps to improve cutting quality and to prolong tool life by lowering, mainly, the cutting force and improving the dynamic cutting stability. This study experimentally investigates the effect of cutting parameters on cutting performance in the machining of Inconel 718 and compares the results of hybrid machining and conventional machining (CM). It is found that the hybrid method results in better surface finish and improves tool life in hard cutting at low cutting speeds as compared to the CM method.  相似文献   

11.
The machining performance of monolithic and composite silicon nitride and Al2O3-based cutting tools in continuous turning of Inconel 718 was examined. The character of tool wear has been found to vary, depending on the feed rate and cutting speeds. At a lower cutting speed, of 120 m/min, tool life is restricted by depth-of-cut notching, while at high cutting speeds (300 m/min), tools fail due to nose wear and fracture. The sensitivity of monolithic Si3N4 and Al2O3 to depth-of-cut notching was found to he significantly reduced with the addition of SiC whiskers, and to a lesser extent with TiC particulates. The ceramic composites also exhibited resistance to nose and flank wear that was higher than that of the monoliths. The internal stress distribution for the cutting tool has been calculated using the finite element method and is the basis for explaining fracture beneath the rake face. Cutting tool wear results are discussed in terms of chemical and mechanical properties of the ceramic tool material, abrasive wear, thermal shock resistance, and metal cutting conditions.  相似文献   

12.
Micro-texture at the tool face is a state-of-the-art technique to improve cutting performance. In this paper, five types of micro-texture were fabricated at the flank face to improve the cooling performance under the condition of high pressure jet coolant assistance. By using micro-textures consisted of pin fins, plate fins and pits fabricated 0.3 mm away from the cutting edge, heat transfer from the tool face to coolant was enhanced. The conditions of tool wear, adhesion and chip formation were compared between the micro-textured and non-patterned tools in the longitudinal turning of the nickel-based superalloy Inconel 718. As a result, micro-textured tools always exhibited the reduced flank and crater wear compared with the non-patterned tool, and the rate of tool wear was influenced by the array and height of fin. The energy dispersive spectroscopy analysis of worn flank faces and the electromotive forces obtained from the tool-work thermocouple supported better cooling performances of micro-textured tools. In addition, coolant deposition at flank face evidenced that heat transfer could be promoted by micro-texture near the border of the contact area between the flank wear land and machined surface. Finally, the changes of flow patterns with pit depth are analyzed for pit type tools by computational fluid dynamics. This investigation clearly showed the function of micro-textures for increasing the turbulent kinetic energy and cooling the textured tool face.  相似文献   

13.
Coating is an important factor that affects cutting-tool performance. In particular, it directly affects surface quality and burr formation in the micro milling process. After the micromechanical machining process, surface quality is very hard to increase by a second process (grinding, etc.). In addition, in micromechanical machining, the cutting tool needs to have a good resistance to wear, owing to the fact that the cutting process is carried out at high speed. In this study, the machinability of Inconel 718 superalloy was investigated, using a Diamond Like Carbon (DLC) coated tool. The experimental tests were carried out in dry cutting conditions for different feed rates and depth of cuts. It was found that the dominant wear mechanism for all cutting parameters was identified to be abrasive and diffusive wear. Besides, a significantly Built Up Edge (BUE) formation was observed in uncoated tool. The results clearly show that DLC coating significantly decreased BUE. In addition, a smaller cutting force and better surface roughness were obtained with a DLC-coated tool. In conclusion, DLC coating can be used in micro milling of Inconel 718. It reduces the BUE and burr formation, improves surface roughness.  相似文献   

14.
Although literature on the measurement of flank wear and crater wear in single-point turning tools using machine vision is well documented, the study on the effect of nose radius wear on the roughness profile and dimensional changes of workpiece is less explored. The measurement of flank wear using the 2-D profile of the tool nose region or the roughness profile of the workpiece has also not been attempted in the past. In this work, the nose radius wear of cutting tools and roughness profile of turned parts in a lathe operation were measured using the machine vision method. The flank wear width VBC in the nose area was determined from the nose radius wear using the tool setup and machining geometry. The nose radius wear was also determined from the roughness profile of the workpiece and used in calculating the flank wear width. Comparison between the maximum flank wear width VBCmax determined from the roughness profile and that obtained using a toolmaker’s microscope showed a mean deviation of 5.5%. This result indicates that flank wear can be determined fairly accurately from the workpiece roughness profile if the tool and machining geometry are known.  相似文献   

15.
This paper reports an experimental study of flank wear on TiN- and TiAlN-coated carbide tools in the turning of AISI 1045, AISI 4135, ductile cast iron, and Inconel 718, and it was conducted with the purpose of showing the relationship between the change in wear rate and the loss of coating layer on the cutting edge. It was found that the relation between cutting distance and flank wear in log-log scale clearly shows the change in wear rate, thus providing a straightforward way to determine the relation between worn out coating layer and increase in wear rate. This relation was confirmed by analyzing the presence of coating layer before and after the inflection point appears by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) photographs. It was observed that the coating layer on the flank face is worn away and finally is worn out. However, even if the layer on the flank face is worn out, tool wear is suppressed as long as the coating layer on the cutting edge exists. On the other hand, when the coating layer on the cutting edge is worn out, the wear resistance of the tool depends on the substrate; thus, the wear rate increases. According to the results, as the cutting speed increases, the change in wear rate appears in a shorter cutting distance, making flank wear to be high. High pressure and high temperature act on the rake face; thus, thermal stability of the coating layer in the cutting edge is important. A low cutting speed decreases cutting efficiency, but a high cutting speed causes flank wear to be high; therefore, in order to optimize machining cost, an acceptable cutting speed, from the standpoint of tool wear, should be selected.  相似文献   

16.
High-speed milling tests were carried out on Ti–6Al–4V titanium alloy with a polycrystalline diamond (PCD) tool. Tool wear morphologies were observed and examined with a digital microscope. The main tool failure mechanisms were discussed and analyzed utilizing scanning electron microscope, and the element distribution of the failed tool surface was detected using energy dispersive spectroscopy. Results showed that tool flank wear rate increased with the increase in cutting speed. The PCD tool is suitable for machining of Ti–6Al–4V titanium alloy with a cutting speed around 250 m/min. The PCD tool exhibited relatively serious chipping and spalling at cutting speed higher than 375 m/min, within further increasing of the cutting speed the flank wear and breakage increased greatly as a result of the enhanced thermal–mechanical impacts. In addition, the PCD tool could hardly work at cutting speed of 1,000 m/min due to the catastrophic fracture of the cutting edge and intense flank wear. There was evidence of workpiece material adhesion on the tool rake face and flank face in very close proximity to the cutting edge rather than on the chipped or flaked surface, which thereby leads to the accelerating flank wear. The failure mechanisms of PCD tool in high-speed wet milling of Ti–6Al–4V titanium alloy were mainly premature breakage and synergistic interaction among adhesive wear and abrasive wear.  相似文献   

17.
The built-up edge (BUE) phenomenon that appears under certain machining condition, such as low-to-moderate cutting speed, high depth of cut, dry cutting, cutting of ductile material, etc. is known to have a major effect on the surface quality of the finished workpiece. In the published literature, BUE has been measured using scanning electron microscope and optical microscopes to study its effect on tool life and surface quality. Such measurement methods are only applicable in off-the-machine inspection. Since the BUE extending beyond the tool nose alters the tool geometry and, thus, influences the workpiece roughness profile, detection of BUE outside the nose region is important. This research proposes a new method for detecting BUE from 2-D images of the nose region of the tool using a machine vision approach. Two methods of determining the BUE area are proposed—the subtraction method and polar-radius transformation method. Application of both methods is successfully demonstrated using simulated and real cutting tool images.  相似文献   

18.
齐孟雷 《工具技术》2014,48(8):55-58
以面铣刀刀片磨损为研究对象,结合类神经网络系统建构高速数控铣削加工的预测模型。以加工参数为模型输入条件,刀腹磨耗为输出条件。采用多因素试验方法,选择切削速度、进给速度、切削深度三个试验参数,利用直交表式的试验计划法设计试验点。依照试验点铣削工件后再测量刀具加工后的刀腹磨耗量,进而求得倒传递网络所需的36组训练范例与11组验证数据。刀腹磨耗预测模式是利用类神经网络中的倒传递网络原理,以田口法求得倒传递网络参数的最优值。试验结果显示,刀腹磨耗随着切削速度、进给速度、切削深度增加而上升。铣削模具钢后,刀具磨耗预测值的平均误差为4.72%,最大误差为11.43%,最小误差为0.31%。整体而言,类神经网络对于铣削加工可进行有效预测。  相似文献   

19.
The paper reports on the modeling and respective experimental validation for the formation of the machined subsurface layer in turning with nose-radiused and round tools. An experimental work on the mechanisms of work-hardening of the machined surface and related wear of the cutting tools was conducted for high-speed turning of aged Inconel 718 with whisker-reinforced alumina tools. The model shows that multiple deformations of the machined surface occur when machining with small feeds and tools with large nose radius, thus changing the mechanics of surface formation. Experimental results confirm the localized increase in subsurface hardness in the vicinity of the tool tip. The variation in the degree of work-hardening and the extent of the area affected by it fully agree with the predictions of the model. The model also shows that a significant part of the cutting tool may cut through the extra work-hardened material. Tool wear tests show that the local increase in workpiece hardness results in a localized increase in the wear rate of the cutting tools.  相似文献   

20.
In this paper, a Multi-layer perceptron (MLP) neural network was used to predict tool wear in face milling. For this purpose, a series of experiments was conducted using a milling machine on a CK45 work piece. Tool wear was measured by an optical microscope. To improve the accuracy and reliability of the monitoring system, tool wear state was classified into five groups, namely, no wear, slight wear, normal wear, severe wear and broken tool. Experiments were conducted with the aforementioned tool wear states, and different machining conditions and data were extracted. An increase in current amplitude was observed as the tool wear increased. Furthermore, effects of parameters such as tool wear, feed, and cut depth on motor current consumption were analyzed. Considering the complexity of the wear state classification, a multi-layer neural network was used. The root mean square of motor current, feed, cut depth, and tool rpm were chosen as the input and amount of flank wear as the output of MLP. Results showed good performance of the designed tool wear monitoring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号