首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 207 毫秒
1.
李永乐  董世赋  臧瑜  强士中 《工程力学》2012,29(12):114-120
将风、车、桥三者作为一个交互作用、协调工作的耦合动力系统,基于风-车-桥系统空间耦合分析模型,以一大跨度公轨两用悬索桥为例,采用自主研发的桥梁结构分析软件BANSYS(Bridge Analysis System)分析了风荷载作用下桥梁和车辆的动力响应,讨论了风速、车速及轨道交通布置方式等因素的影响;同时,基于合理的列车运行安全性和舒适性评价指标,对列车通过该桥时的走行安全性与舒适性进行了分析,得出了该悬索桥的抗风行车准则:当风速小于20m/s时,车速可达设计车速80km/h;当风速介于20m/s和25m/s之间时,车速不能大于60km/h;当风速大于25m/s时,应封闭轨道交通。  相似文献   

2.
郭薇薇  夏禾  徐幼麟 《工程力学》2006,23(2):103-110
建立了风-列车-桥梁体系动力分析模型,根据实测空气动力参数和颤振导数模拟产生抖振力和自激力时域随机风荷载作为输入激励,以一座大跨度悬索桥方案为例,分析了风作用下桥梁和车辆的动力响应。结果表明:悬索桥的横向、扭转位移由风力控制,竖向位移主要由列车重力加载引起。风对桥上列车的运行安全有很大影响:在平均风速为30~40m/s的脉动风作用下,车辆的轮重减载率、脱轨系数和倾覆系数超标,必须给予足够的重视。  相似文献   

3.
突变阵风因风速在短时内发生瞬时变化容易对高速列车的行车安全性造成威胁。根据一维多变量非平稳随机过程理论,模拟了空间相关的时变阵风脉动风速场。采用多体动力学软件SIMPACK和有限元分析软件ANSYS,建立了42自由度的刚性列车与柔性轨道-桥梁相互作用的刚柔耦合模型,考虑横风向时变阵风的影响,基于刚柔耦合法形成了较为完善的风-列车-轨道-桥梁耦合动力学分析系统。以大跨度拱桥为工程背景,分析了时变阵风在不同车速和风速下对列车和桥梁动力响应特性及行车安全性的影响。结果表明:阵风对桥梁和车辆的动力响应具有重要的影响;在相同条件下考虑阵风影响时,主跨跨中横向位移增幅达到了200%,车辆的轮重减载率、脱轨系数相比于不考虑阵风时增大近30%;在风速大于25 m/s,车速大于80 km/h,轮重减载率将超过安全限值,表明车辆可能发生脱轨。  相似文献   

4.
李永乐  赵凯  陈宁  廖海黎 《工程力学》2012,29(5):206-212
强风不仅是长大桥梁设计的控制性因素,而且直接影响到桥上车辆的运行安全。将自然风、公路车辆、桥梁作为一个统一的相互作用系统,在风-汽车-桥梁系统耦合振动分析的基础上,针对车辆侧倾事故和侧滑事故的评判准则,采用概率统计方法提高了风致车辆事故分析的可靠性。结合工程实例对强风作用下桥梁的动力响应和车辆的运行安全性进行了分析。计算得到了给定的车速条件下厢式货车的侧倾临界风速及干、湿、雪、冰四种路况情况下的侧滑临界风速,提出了适用于交通安全策略管理的强风天气条件下桥上车辆限速标准。  相似文献   

5.
基于列车测压试验,以平层公铁桥梁和CRH2列车为背景,分析了风屏障对平层公铁桥上列车表面风压分布的影响,研究了有无风屏障时列车表面压力以及气动力的跨向相关性的变化规律。研究结果表明:设置风屏障后,列车迎风面与背风面、顶面和底面风压差随风屏障透风率的减小而减小,使得列车总体侧力和升力减小,风屏障透风率为20%时,列车表面脉动压力分布较均匀,有利于桥上列车运行时的安全与舒适。风屏障的防风效果不会随着风屏障高度的增加一直变好,透风率为40%时,风屏障存在一个最优高度3.5 m。风屏障透风率对列车迎风面以及顶面圆弧过渡段表面风压的影响明显大于高度。设置风屏障后,列车底面和背风面测点压力跨向相关性更好,风屏障的挡风效应增强了这两部分展向流场的一致性,使流体的脱落点更一致。随着跨向间距的增大,气动力的相关性越来越差,风屏障对气动力的跨向相关性较无风屏障时弱,设置风屏障时跨向间距超过5倍列车高,气动力完全不相关。  相似文献   

6.
几何非线性是大跨度桥梁结构的主要非线性影响因素之一,对桥梁结构及桥上列车行车安全性的影响不容忽视。该文以世界首座跨度超1 km的公铁两用斜拉桥——沪苏通长江大桥为工程背景,基于桥址区复杂风场实测,采用谱表示法提取实际风场特征,模拟全桥三维风速场,建立了考虑复杂非线性空间特性的风荷载模型,考虑垂度效应、梁柱效应和大位移效应等几何非线性因素,建立了桥梁非线性计算子模型,采用全过程迭代法计算考虑非线性因素的风-车-桥耦合振动响应,并给出行车安全性分析。结果表明:考虑非线性因素工况下,桥梁与车辆的动力响应均有一定程度的增大,且车辆动力响应的低频成分显著增加;大位移效应对结构响应影响较大,梁柱效应影响较小;忽略非线性因素影响,可能导致响应分析偏小,评估偏不安全;当车速为200 km/h,瞬时风速超过35 m/s,或当瞬时风速为30 m/s,车速超过210 km/h时,车辆轮重减载率指标超出安全阈值,行车安全性受到威胁。沪苏通大桥的非线性风-车-桥耦合振动分析具有重要的科学研究意义,并对保障桥梁结构和列车运行安全具有重要的工程指导作用。  相似文献   

7.
雷虎军  刘伟  黄炳坤 《振动与冲击》2020,39(10):249-255
为研究地震作用下超大跨铁路悬索桥桥上列车的行车安全问题,以某主跨为1 120 m的公铁两用悬索桥方案为研究对象,采用虚拟横梁法建立了全桥梁格模型,并通过板梁组合模型验证了梁格模型的正确性。在此基础上,通过输入7条地震波,采用自主编制的列车-轨道-桥梁-地震分析程序TTBSAS进行仿真计算,研究了一致激励、行波激励下悬索桥-列车系统的动力响应特征,分析了列车过桥时的行车安全性。结果表明:对于悬索桥-列车系统,地震对桥梁和轨道动力响应的影响大于车辆;横向地震除了使钢桁梁主梁及桥上轨道发生大幅横向振动外,还会诱发主梁的附加扭转振动;不考虑地震行波效应会严重低估列车的行车安全性指标。对于这些计算条件,桥上列车行车安全性研究的最不利行波波速为500 m/s,在0.15g设计地震作用下列车通过主跨1 120 m悬索桥时的安全车速阈值为300 km/h。  相似文献   

8.
夏超逸  雷俊卿  张楠  夏禾 《工程力学》2012,29(12):101-107,120
建立了“列车-桥梁-撞击荷载”系统动力分析模型,通过在松花江大桥进行的现场试验,得到了流冰撞击力时程,施加到桥墩上作为系统的激励。编制了分析程序,以高速铁路5×32m预应力混凝土简支单线箱梁桥为算例,通过计算机模拟,对流冰撞击作用下桥梁结构的动力响应及桥上高速列车的运行安全问题进行了研究。分析了在有流冰、无流冰撞击作用两种情况下,桥梁结构关键部位的位移和加速度响应,以及桥上高速运行列车的车辆脱轨系数和轮重减载率等行车安全指标。计算结果表明:流冰撞击作用对桥梁结构以及高速列车的动力特性具有较大的影响,撞击作用使桥梁和车辆的动力响应大幅度增大。当流冰撞击荷载峰值达到4000kN时,车辆减载率已经超过了0.6的限值。撞击荷载作为一项特殊的作用力,在高速铁路桥梁的动力设计中应予以重视。  相似文献   

9.
基于可靠度理论,分析风荷载作用下高速列车在桥上的运行安全性,利用失效概率来评价桥上列车横风安全性。首先由风洞试验获得的列车和桥梁的气动力系数,计算列车和桥上的气动力,然后建立风荷载作用下车桥耦合系统分析模型,计算不同平均风速下高速列车以不同车速在桥上运行时的安全性评价指标,最后基于可靠度理论计算高速列车桥上运行的失效概率。以兰新铁路第二双线上的十跨简支槽型梁桥为例,分析横风作用下高速列车桥上运行时的失效概率,并与确定性分析方法比较,结果表明:随着列车运行速度和平均风速的增加,车桥系统的失效概率增加;相同车速及平均风速时,拖车比动车的失效概率大;采用确定性方法获得的列车特征风曲线,对动车其大致与失效概率10%的列车概率特征风曲线相当,对拖车则对应着更低的失效概率。  相似文献   

10.
流冰撞击力作用下列车–简支梁桥耦合振动分析   总被引:1,自引:1,他引:0  
夏超逸  雷俊卿  张楠 《振动与冲击》2012,31(13):154-158
建立撞击荷载作用下列车‐桥梁系统动力分析模型,将现场实测的流冰撞击力时程作为系统的撞击荷载。通过计算机仿真分析,对流冰撞击作用下高速铁路桥梁的动力响应及其对桥上列车运行安全的影响进行研究。采用自编程序模拟列车过桥的全过程,计算分析7 m×24 m简支箱梁桥在流冰撞击力作用下动力响应及桥上高速列车的动力响应。计算结果表明,在实测流冰撞击力作用下,桥梁横向加速度以及车辆脱轨系数和轮重减载率等行车安全指标在列车速度250 km/h以上时超过容许值,说明流冰撞击作用对车桥系统耦合振动响应具有较大的影响。  相似文献   

11.
夏超逸  张楠  夏禾 《工程力学》2013,30(8):119-126
建立了撞击荷载作用下的高速列车-桥梁系统动力分析模型,将汽车撞击力时程作为系统的撞击荷载,以一座5m×24m连续箱梁桥和ICE3高速列车为例,模拟汽车撞击力作用于桥墩和列车过桥的全过程,分析了车桥梁系统的动力响应,对桥上高速列车的运行安全指标进行了评价。结果表明:汽车撞击使桥梁的动力响应大幅度增加,并对高速列车运行安全有极大的影响。对撞击作用下的桥上高速列车走行安全控制方法进行了探讨,给出了列车速度-撞击力强度安全阈值曲线。  相似文献   

12.
为研究高速铁路斜拉桥在地震作用下的车-桥耦合动力响应及列车走行性能,以新建杭长客专铁路长沙段(112 m+80 m+32 m)槽型截面独塔斜拉桥为研究对象,利用车-线-桥耦合动力学分析软件TRBF-DYNA建立了考虑地震作用的列车-轨道-桥梁耦合系统空间动力分析模型。采用等效荷载法计算轨道-桥梁子系统的地震响应,通过考虑拟静力位移分量,将钢轨相对地震响应转化为绝对坐标系下动力响应,最终通过空间轮轨滚动接触模型将地震作用传递至车辆子系统。对比分析了不同列车运行速度和不同地震强度条件下桥梁、列车动力响应的变化规律,评估了列车行车安全性能。结果表明:地震对列车运行安全性有显著影响,根据我国规范可判断列车在7度、8度、9度多遇地震下的安全行车速度阈值分别为200 km/h、180 km/h和140 km/h;根据轮轨接触评判准则,在80 km/h~240 km/h的行车速度范围内,在7度、8度和9度多遇地震下轮轨相对位移仍在安全范围内。  相似文献   

13.
将船舶撞击力时程作为系统的外部激励,建立了撞击荷载作用下的车桥系统动力分析模型。以一座 (32+48+32) m双线预应力混凝土连续梁桥和国产CRH2高速列车为例,模拟船舶撞击力作用于桥墩时列车过桥的全过程,分析了桥梁和车辆的动力响应。结果表明:船舶撞击作用大幅度增大了桥梁的横向位移和加速度响应,显著影响了桥上高速列车的运行安全。探讨了船舶撞击荷载作用下的桥上高速列车走行安全评价方法,综合分析了列车速度和荷载撞击强度对列车运行安全的影响,在此基础上给出了列车速度-撞击力强度安全阈值曲线。  相似文献   

14.
京沪高速铁路南京长江大桥列车走行性分析   总被引:10,自引:0,他引:10  
运用桥梁结构动力学与车辆动力学的研究方法,将车桥作为联合动力体系,建立了高速列车与大跨度斜拉桥的车桥耦合动力分析模型。以京沪高速铁路南京长江大桥3塔斜拉桥方案为例,分析了大跨度斜拉桥在ICE高速列车作用下的车桥动力响应特点;同时,基于合理的列车走行性评价指标,对高速列车通过大跨度斜拉桥时的走行安全性与舒适性进行了详细分析,初步探讨了大跨度斜拉桥用于高速铁路的可行性。  相似文献   

15.
侧风作用下桥上通行车辆容易遭受行车安全问题。通过节段模型风洞试验,测试了主梁行车道位置上方一定高度范围内风场分布特性。基于车辆气动力和力矩等效的方法,采用等效风速和比例系数来考虑桥面气动绕流对车辆气动力特性的影响。在风-汽车-桥耦合振动研究的基础上,采用无量纲的侧倾和侧滑安全因子评价车辆的行车安全性,分析了风速和车速对不同类型车辆行车安全性的影响。结果表明:车辆的行车安全性随着风速和车速的增大而逐渐降低;桥面风场等效气动效应会降低集装箱车和旅行巴士的行车安全性,集装箱车RSF和SSF最大相对误差分别高达28.0%和184.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号