首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《动力工程学报》2017,(12):1007-1014
采用标准k-ε双方程湍流模型对1台连接于锅炉烟道的线板式静电除尘器(ESP)进行三维数值模拟,研究了ESP内烟气流场分布、电晕电场以及飞灰颗粒的荷电特性和运动轨迹,并分析了电场力与湍流作用对烟气流动和飞灰颗粒捕获的影响.结果表明:气流分布板能均化烟气流场,降低电场区入口烟气流速;电场区飞灰颗粒质量浓度沿深度方向逐渐降低,放电极电压的增加使得飞灰颗粒荷电量增加,较强的电场力增强了收尘极板对飞灰颗粒的捕获,提高了收尘效率;在较高的烟气流速下飞灰颗粒所受惯性力增大,克服电场力逃脱收尘极板捕获的能力增强,使得ESP收尘效率降低.  相似文献   

2.
针对转炉干法除尘系统蒸发冷却器内部结垢现象影响静电除尘器除尘效率的问题,采用FLUENT软件对蒸发冷却器内部结垢前后的速度场、压力场及温度场进行了数值模拟。研究结果表明:烟气进入蒸发冷却器后流速降低,压力逐渐增加;由于雾化水的蒸发冷却作用,烟气温度由800℃降低190℃;蒸发冷却器结垢后烟气压力场与温度场均有所改变,出口平均压力由-104 Pa降低到-229 Pa,平均温度由190℃提高到224℃;出口处烟气温度较结垢前提高了34℃,烟气温度升高导致静电除尘器入口处粉尘比电阻超出最佳电除尘器参数的范围,导致电除尘效率降低。  相似文献   

3.
针对电除尘器内部流场运动规律,采用基于有限元法的COMSOL软件对电除尘器三维模型进行数值模拟,分析了主流速度和电流体动力学(EHD)流对电除尘器内部流场的影响。通过泊松方程与电流连续性方程耦合模拟电晕放电,采用稳态不可压缩Navier-Stokes方程和标准k-?湍流模型求解气流流动,运用流体流动粒子追踪模块模拟粒子运动轨迹。结果表明:随着通道入口流速的增大,二次EHD流影响逐渐减小,主流流速达到1 m/s时,EHD流影响消失,主流速度占据主导地位;对于1μm粒径的粒子,随着入口流速从0.3 m/s提升到1 m/s,收集效率由48%降低到15%;有无EHD流对于粒径小于10μm粒子收集效率的影响可忽略不计。  相似文献   

4.
顾中铸  魏启东  蔡崧 《动力工程》2004,24(3):446-450
基于实验研究结果,对无电晕式高温高压静电除尘器的阴极电子发射、粉尘荷电、浓度扩散、烟气流动、尘粒捕集等过程进行了数值模拟,从理论上分析讨论了温度、压力、电压、流速、含尘浓度、比电阻以及粒径等因素对除尘效率的影响,计算结果与实验结果基本吻合。研究发现,与传统的电晕式静电除尘器不同,无电晕式静电除尘器可以在较高含尘浓度和较低电压下正常工作,且特别适用于高温(高压)烟气的除尘。图11参6  相似文献   

5.
徐琛  柏祥华 《柴油机》2013,35(5):12-15, 40
为掌握火花熄灭消声器内部流动特性,采用湍流模型和离散相(DPM)模型对双级膨胀腔消声器内气固两相流动情况进行了数值模拟研究。通过建立的模型和边界条件模拟气体流动,利用双向耦合拉格朗日法追踪颗粒运动轨迹;讨论了不同颗粒粒径、入口颗粒浓度以及不同排气流速对火花熄灭效率和压力损失的影响。数值计算结果表明:随着颗粒粒径、入口颗粒浓度及排气流速的增加,火花熄灭效率逐渐增大,特别是颗粒粒径和排气流速对火花熄灭效率影响比较明显。  相似文献   

6.
管式电除尘器的实验研究   总被引:4,自引:0,他引:4  
为研制新型的除尘装置,本文对管式高压静电除尘器的性能进行系统的实验研究,通过模型实验,研究烟气流量、粉尘浓度、电场坟对除尘效率的影响关系和变化规律,发现在一定的粉尘浓度下,只要选择合适的电场风速和电压,电寺器的收尘效率可高达99.9%,说明在烟气除尘中,电除尘器有很好的应用前景。  相似文献   

7.
对微细颗粒在不同极线排布结构的静电除尘器内的输运与荷电过程进行了数值模拟,主要分析了不同烟气流速对颗粒捕集效率的影响。计算结果表明:M0型除尘器中电场分布均匀,在M1型与M2型除尘器中极线与集尘板之间区域的电场强度会相应增大,对颗粒的捕集有积极效果,但相邻很近的两根极线之间会形成一个电场强度非常小的区域,对小粒径颗粒的捕集效果可能有削弱作用;增大烟气流速会对颗粒的捕集效果有弱化作用;烟气流速越大,颗粒的捕集效率越低。  相似文献   

8.
采用BDL粉尘比电阻测定仪、巴柯粒度分析仪和COULTERTM SA 3100TM比表面积分析仪对某燃用准格尔煤电厂飞灰的比电阻、粒度及比表面积进行了分析,研究了烟气中SO3对微细颗粒物导电性能和团聚性能的影响.结果表明:在锅炉额定工况下当烟气中SO3的质量浓度增加约34.3 mg/m^3时,飞灰比电阻降低约2个数量级,同时飞灰表面张力减小,黏附力增大,使得微细颗粒团聚为大颗粒,平均粒径增大,比表面积减小,从而使电除尘器效率明显提高.  相似文献   

9.
降膜式脱硫反应器内烟气流动及脱硫特性的模拟研究   总被引:1,自引:0,他引:1  
于宝成 《节能技术》2005,23(3):211-213,272
利用FLUENT计算流体力学软件,模拟烟气在不同的流速下,通过降膜式脱硫管簇时其周围的流场和污染浓度变化的情况,得到流场中速度和流场内SO2的浓度分布图,从而得出不同烟气流速情况下错列管簇的脱硫效率。计算结果表明:入口烟气流速越高,脱硫管簇中烟气压力、烟气中SO2浓度变化幅度越高,脱硫管簇的阻力系数逐渐增大。同时,入口烟气流速越大,脱硫管簇的脱硫效率就越高。  相似文献   

10.
本研究采用有限体积法对湿式电除尘器内部颗粒运动轨迹和颗粒收集效率进行了计算,利用某330 MW燃煤发电机组湿式电除尘器的实验数据来建立其颗粒充电模型,并分析不同循环水量下的颗粒收集效率。应用欧拉多相流方法计算气液两相流,结合DPM(离散相模型)追踪离子轨迹来模拟湿式电除尘器内部三相流动。结果显示,数值计算模型与实验数据匹配程度较好,能一定程度上体现湿式电除尘器内部特性。研究发现,在一定范围内随着循环水量的增加,收集效率随之增大;同时发现,在高循环水量的情况下,收集效率随着粒径的增大而增大;但是,在低循环水量下,随着粒径增大,收集效率下降,然后随着粒径的增大而升高。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

19.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

20.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号