首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bidirectional DC-DC converter topology for low power application   总被引:3,自引:0,他引:3  
This paper presents a bidirectional DC-DC converter for use in low power applications. The proposed topology is based on a half-bridge on the primary and a current-fed push-pull on the secondary side of a high frequency isolation transformer. Achieving bidirectional flow of power using the same power components provides a simple, efficient and galvanically isolated topology that is specially attractive for use in battery charge/discharge circuits in DC UPS. The DC mains (provided by the AC mains), when presented, powers the down stream load converters and the bidirectional converter which essentially operates in the buck mode to charge the battery to a nominal value of 48 V. On failure of the DC mains (derived from the AC mains), the converter operation is comparable to that of a boost and the battery regulates the bus voltage and thereby provides power to the downstream converters. Small signal and steady state analyses are presented for this specific application. The design of a laboratory prototype is included. Experimental results from the prototype, under different operating conditions, validate and evaluate the proposed topology. An efficiency of 86.6% is achieved in the battery charging mode and 90% when the battery provides load power. The converter exhibits good transient response under load variations and switchover from one mode of operation to another  相似文献   

2.
The evolution of computer-aided design tools has extended the capabilities of a designer by pushing the optimality of complex circuits beyond the ad hoc manual implementation. This work presents a framework to co-optimize the circuit and the layout parameters of fully integrated inductive DC–DC converters. The framework comprises expensive optimization that is speeded up by active learning sample selection and evolutionary techniques to acquire an optimal converter. A tapered inductor topology is used to increase the quality of the on-chip inductor and to improve the efficiency of the overall monolithic DC–DC converter. The optimization framework is validated by co-optimizing the design parameters and the tapered inductor layout for a fully-integrated DC–DC boost converter in a 0.13 μm CMOS technology. The power loss in the circuit is reduced with 27 % resulting in a 7 % efficiency improvement, compared to a fully-integrated DC–DC boost converter with a regular inductor topology.  相似文献   

3.
文中提出一个新颖实用的交、直流变换器拓扑结构,论述数字式交、直流双向变流器的工作原理,功率变换电路控制策略以及功率变换回路如何选择主要器件及其参数,并通过小批量产品来验证变换器运行的正确性。  相似文献   

4.
A single-stage power-factor-corrected AC/DC converter   总被引:1,自引:0,他引:1  
This paper presents a single-stage isolated converter topology designed to achieve a regulated DC output voltage having no low-frequency components and a high-input power factor. The topology is derived from the basic two-switch forward converter, but incorporates an additional transformer winding, inductor and a few diodes. The proposed circuit inherently forces the input current to be discontinuous and AC modulated to achieve high-input power factor. The converter output is operated in discontinuous mode to minimize the bulk capacitor voltage variations when the output load is varied. Analysis of the converter is presented, and performance characteristics are given. Design guidelines to select critical components of the circuit are presented. Experimental results on a 150 W 50 kHz universal input (90-265 V) 54.75 V output AC/DC converter are given which confirm the predicted performance of the proposed topology  相似文献   

5.
A novel circuit-topology family of the current-mode AC/AC converter with high-frequency AC link, based on a Flyback converter, is proposed. These circuit topologies, which can transfer one unregulated sinusoidal voltage with high total harmonic distortion (THD) into another regulated constant-frequency sinusoidal voltage with low THD, are composed of input cycloconverter, high-frequency storage transformer, and output cycloconverter. The circuit-topology family includes single four-quadrant power switch mode, push-pull mode, half-bridge mode, and full-bridge mode circuits. The single four-quadrant power switch mode and push-pull mode converters are suitable for low input voltage fields, but the half-bridge mode and full-bridge mode converters are suitable for high input voltage fields. The operational mode, steady principle, and transient voltage feedback control strategy of the kind of converter are investigated. The output characteristic curve, its relation to internal resistance, and the design criteria for the key circuit parameters are given. The theoretical analysis and the test result of the 500 VA 220 V 15% 50 HzAC/220 V 50 HzAC prototype have shown that the converters have advantages such as high-frequency galvanic isolation, simple topology, two-stage power conversion [low frequency alternating current (LFAC)/high frequency alternating current (HFAC)/LFAC], bidirectional power flow, high efficiency, high power density, low THD of the output voltage, strong adaptability to various loads, higher line power factor, low audio noise, etc.  相似文献   

6.
This paper presents a novel DC-AC converter for applications in the area of distributed energy generation systems, e.g., solar power systems, fuel-cell power systems in combination with supercapacitor or battery energy storage. The proposed converter is realized using an isolated multicell topology where the total AC output of the system is formed by series connection of several full-bridge converter stages. The DC links of the full bridges are supplied by individual DC-DC isolation stages which are arranged in parallel concerning the dc input of the. total system. Therefore, all switching cells of the proposed converter can be equipped with modern low-voltage high-current power MOSFETs, which results in an improved efficiency as compared to conventional isolated DC-AC converters. Furthermore, the cells are operated in an interleaved pulsewidth-modulation mode which, in connection with the low voltage level of each cell, significantly reduces the filtering effort on the AC output of the overall system. The paper describes the operating principle, analyzes the fundamental relationships which are relevant for component selection, and presents a specific circuit design. Finally, measurements taken from a 2-kW laboratory model are presented.  相似文献   

7.
Voltage-source charge-pump power-factor-correction AC/DC converters   总被引:4,自引:0,他引:4  
Voltage-source charge-pump power-factor-correction (VS-CPPFC) AC/DC power converters are proposed in this paper. The PFC converter using the CP concept is first derived. The unity power factor condition is derived and analyzed. The clamping technique is used to satisfy the unity power factor condition. Based on the steady-state analysis, design considerations for the CPPFC stage are discussed. A family of VS-CPPFC topologies is also presented. The proposed VS-CPPFC AC/DC power converter was implemented and tested. The experimental results show that 83.5% efficiency and 0.996 power factor can be achieved for a half-bridge CPPFC AC/DC converter with 250-W and 12-V output,  相似文献   

8.
In this paper, a new topology is proposed that can significantly reduce the converter rated power and increase the efficiency of total photovoltaic (PV) system. Since the output voltage of PV module has very wide operating range, in general, the DC/DC converter is used to produce constant high-DC-link voltage for DC/AC inverter. According to the analysis of the proposed topology, only 20% of total PV system power is processed by the DC/DC power conversion stage. The DC/DC power conversion stage used in proposed topology has flat efficiency curve throughout all load range and very high efficiency characteristics. In the proposed topology, because the converter efficiency curve is almost flat throughout all load range, the total system efficiency at light load is dramatically improved. The proposed topology is implemented for 250-kW power conditioning system. This system has only three DC/DC power conversion stage with 24-kW rated power. It is only one-third of total system power. The experimental results show that the proposed topology has good performance.  相似文献   

9.
Multiconverter-distributed DC architectures have been utilized for power distribution in many applications such as telecommunication systems, sea and undersea vehicles, an international space station, aircraft, electric vehicles, hybrid-electric vehicles, and fuel-cell vehicles, where reliability is of prime concern. The number of power-electronic converters (AC/DC, DC/DC, DC/AC, and AC/AC) in these multiconverter electrical power systems varies from a few converters in a conventional land vehicle, to tens of converters in an advanced aircraft, and to hundreds of converters in the international space station. In these advanced applications, power-electronic converters might need to have a tight output-voltage regulation. From the output perspective, this property is highly desirable. However, since power-electronic converters are efficient, tight regulation of the output makes the converter appear as a constant-power load (CPL) at its input side. Dynamic behavior of CPLs is equivalent to negative impedance and, therefore, can result in instability of the interconnected power system. In order to mitigate the instability of the power converters loaded by CPLs, this paper presents the pulse-adjustment digital control technique. It is simple and easy to implement in application-specific integrated circuits, digital-signal processors, or field-programmable gate arrays. Moreover, its dynamic response is fast and robust. Line and load regulations are simply achievable using this technique. Analytical, as well as simulation and experimental results of applying the proposed method to a DC/DC buck-boost converter confirm the validity of the presented technique.  相似文献   

10.
Rapidly dropping power supply voltages and tight voltage regulation requirements for integrated circuits challenges power supply designers. A novel interleaved discharging (ID) approach is presented to reduce the output ripple in step-down switched-capacitor (SC) dc-dc converters. Simulation and experimental results of a four-stage SC dc-dc converter show that the ID approach can reduce the output ripple by a factor of three. The proposed approach also improves the converter efficiency by 7%. The ID method provides flexibility in the design optimization of step-down SC dc-dc converters  相似文献   

11.
无源软开关电路拓扑的研究   总被引:1,自引:0,他引:1  
提出一个研究无源软开关电路的新技术方法;其特征是对基本的单管隔离型PWM DC/DC变换器进行类比分析,由此直接导出可行的缓冲能量再生复位电路.该新方法能使DC/DC PWM硬开关变换器转变为软开关变换器.以新型Boost无源软开关变换器为例,进行了电路理论分析与中功率样机的实验测试;结果表明此新变换器具有较宽的软开关工作范围、较低的电应力、较小的缓冲元件量值等特点.由此认为,这种研究方法推导简单、物理意义清晰,还能深入地研究无源软开关的新电路拓扑.  相似文献   

12.
Switched-capacitor DC/DC converters with resonant gate drive   总被引:3,自引:0,他引:3  
In this paper, we examine how switched-capacitor (SC) converters can be used in low-voltage low-power DC/DC applications with power management. Analysis of losses is presented to facilitate SC converter design and optimization. A resonant gate drive is proposed to reduce switching losses and simplify control of switches in SC converters. A closed-loop controller is designed to enable and disable oscillations of the resonant gate drive so that the output DC voltage is well regulated down to zero load and so that high efficiency is maintained for a very wide range of loads. Results are experimentally verified on two low-power (0.2 and 5 W) five-one step-down converters with regulated 3 Vdc output and efficiency greater than 80% in a 100-1 load range  相似文献   

13.
14.
基于现代电力电子技术,深入研究能量回馈式的交流电子负载的主电路结构和控制策略。主电路采用AC/DC/AC拓扑,并选用电压型PWM整流器构成其输入、输出变流器。提出了一种基于DSP的交流电子负载的控制策略。  相似文献   

15.
A new type of switching-mode power supply containing no inductors or transformers is proposed. The controlled transfer of energy from a unregulated DC source to a regulated output voltage is realized through a switched-capacitor (SC) circuit. A duty-cycle control is used; the driving signals of the transistors in the SC circuit are determined by the feedback circuit. The absence of magnetic devices makes possible the realization of power converters of small size, low weight and high power density, able to be manufactured in IC technology. High efficiency, small output voltage ripple and good regulation for large changes in the input voltage and/or load values are other positive features of the new type of DC-to-DC power converter. The input-to-output voltage conversion ratio is flexible; the same converter structure can provide a large range of constant desired values of the output voltage for a given input voltage, by predetermining the steady-state conversion ratio. The frequency response shows good stability of the designed converter. The experimental results obtained by using a prototype of a step-down SC-based DC-to-DC converter confirmed the theoretical expectations and the computer simulation results.<>  相似文献   

16.
This paper presents a new method to improve light load efficiency and minimize output ripple of switched-capacitor (SC) DC/DC converters. In order to improve light load efficiency, this paper proposes adaptive frequency modulation to scale down gate-drive losses as load current reduces. Adaptive duty cycle modulation is proposed to minimize output ripple as the converter works under different gain hopping mode. Furthermore, this work optimized switching frequency, the dead time of 2-phase non-overlapping clocks and switching transistor size for efficiency enhancement. A new compensation circuit is also proposed to make system stable. A transistor level implementation of the proposed SC converter in Chartered 0.35 μm CMOS process is provided. Measurement results shows: maximum ripple voltage is <8 mV and efficiency is up to 87%.  相似文献   

17.
Multiphase series resonant (SR) power converters provide a flexible way to transform power between a utility grid and a multiphase load or source. The current implementations all suffer from a high component count, which makes the use of these power converters unattractive from an economical point of view. A new topology for multiphase SR power converters has been proposed in the literature in a simulation context. This topology uses half the number of power semiconductors compared to the existing multiphase SR power converters. The present paper addresses the implementation of the new topology in a prototype power converter. The old and new topologies are presented. The operation of the new topology is explained. In the new topology the resonant circuit is grounded at one side, which compared to the old topology imposes a restriction on the operation. The paper shows both simulation data and measured waveforms. It is explained that the economical gain due to the reduction in component count is offset by a lower power rating. The paper finishes with conclusions and acknowledgments  相似文献   

18.
The historical development of power electronic converters to control electrical machines is traced up to the present state of the technology. The fundamental possibilities to control average power in a switching mode are considered and the concepts switching function, converter topology and converter structure defined. A systematic approach to developing more complicated topologies and structures for singular and composite converters is discussed and application to motion control systems given. A functional classification of motion control converters is also related to the switching nature of the power processing, illustrating the fundamental dilemma of this kind of highly efficient power control. The different control possibilities of using power electronic converters with electrical machines in motion control applications (DC drives, AC drives) are reviewed systematically. The paper does not attempt to compile a comprehensive list of all possible converter circuits and variations but focusses on generic issues and technologies. The switching technology in converters and its limitations is related to snubberless, snubbed, and resonant transition-type operation, with reference also to switch drive and converter protection technology. Some future generic possibilities related to electromagnetic integration of switching converters are discussed, also in relation to a motion control application  相似文献   

19.
Because of lower voltage levels and smaller power ratings, the R/X ratio of commutation impedance in industrial AC/DC distribution systems is usually higher than that in HVDC transmission systems. Considerable discrepancies may therefore occur in industrial AC/DC power flow results, especially the reactive power consumption of converters, if the commutation resistances of the converters are neglected. To describe the effects of commutation impedance on converter operations and to precisely relate the fundamental line current and DC output current of the converter, a detailed model of the bridge converter with commutation impedance for use of Newton-Raphson power flow studies in industrial AC/DC power systems is derived in this paper. A coal mine power system and a DC electrified transit railway system with regenerative braking function, a part of Taipei Rapid Transit Systems under planning, have been analyzed to show the improved accuracy and good convergence characteristics of the developed Newton-Raphson power flow formulation with the proposed converter model  相似文献   

20.
刘晓悦 《电子器件》2021,44(1):46-51
本文介绍了一种新的高功率双向隔离式DC/DC变换器。DC/DC转换器使用基于氮化镓(GaN)的功率开关器件。本文对10 kW GaN大功率DC/DC变换器的拓扑结构进行了优化,参数化和分析,并通过仿真和验证了其有效性。它由两个单相全桥电路、两个输入输出电感和一个高频变压器组成。高频变压器在实现两个全桥变换器之间的电流隔离方面起着至关重要的作用。使用MATLAB仿真软件对10 kW的变换器进行了建模。MATLAB仿真结果验证了变换器的性能适合于高功率应用并能实现轻负载条件下的零电压开通(ZVS)和零电流关断(ZCS)。然后,设计了一个7 kW的实验原型,以验证所设计拓扑的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号