首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Melanocytes are derived from the neural crest (NC), which are transient multipotent cells arising by delamination from the developing dorsal neural tube. During recent years, signaling systems and molecular mechanisms of melanocyte development have been studied in detail, but the exact diversification of the NC into melanocytes and how they migrate, expand and disperse in the skin have not been fully understood. The recent finding that Schwann cell precursors (SCPs) of the growing nerve represents a stem cell niche from which various cell types, including Schwann cells, endoneural fibroblasts and melanocytes arise has exposed new knowledge on the cellular basis for melanocyte development. This opens for the identification of new factors and reinterpretation of old data on cell fate instructive, proliferative, survival and cell homing factors participating in melanocyte development.  相似文献   

2.
Melanocytes are pigment‐producing cells generated from neural crest cells (NCCs) that delaminate from the dorsal neural tube. The widely accepted premise that NCCs migrating along the dorsolateral pathway are the main source of melanocytes in the skin was recently challenged by the finding that Schwann cell precursors are the major cellular source of melanocytes in the skin. Still, in a wide variety of vertebrate embryos, melanocytes are exclusively derived from NCCs. In this study, we show that a NCC population that is not derived from Sox1+ dorsal neuroepithelial cells but are derived from Sox1? cells differentiate into a significant population of melanocytes in the skin of mice. Later, these Sox1? cells clearly segregate from cells that originated from Sox1+ dorsal neuroepithelial cell‐derived NCCs. The possible derivation of Sox1? cells from epidermal cells also strengthens their non‐neuroepithelial origin.  相似文献   

3.
In the beginning     
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.  相似文献   

4.
Human multipotent dermal stem cells (DSCs) have been isolated and propagated from the dermal region of neonatal foreskin. DSCs can self-renew, express the neural crest stem cell markers NGFRp75 and nestin, and are capable of differentiating into a wide variety of cell types including mesenchymal and neuronal lineages and melanocytes, indicative of their neural crest origin. When placed in the context of reconstructed skin, DSCs migrate to the basement membrane zone and differentiate into melanocytes. These findings, combined with the identification of NGFRp75-positive cells in the dermis of human foreskin, which are devoid of hair, suggest that DSCs may be a self-renewing source of extrafollicular epidermal melanocytes. In this review, we discuss the properties of DSCs, the pathways required for melanocyte differentiation, and the value of 3D reconstructed skin to assess the behavior and contribution of DSCs in the naturalized environment of human skin. Potentially, DSCs provide a link to malignant melanoma by being a target of UVA-induced transformation.  相似文献   

5.
Recent studies show that specification of some neural crest lineages occurs prior to or at the time of migration from the neural tube. We investigated what signaling events establish the melanocyte lineage, which has been shown to migrate from the trunk neural tube after the neuronal and glial lineages. Using in situ hybridization, we find that, although Wnts are expressed in the dorsal neural tube throughout the time when neural crest cells are migrating, the Wnt inhibitor cfrzb-1 is expressed in the neuronal and glial precursors and not in melanoblasts. This expression pattern suggests that Wnt signaling may be involved in specifying the melanocyte lineage. We further report that Wnt-3a-conditioned medium dramatically increases the number of pigment cells in quail neural crest cultures while decreasing the number of neurons and glial cells, without affecting proliferation. Conversely, BMP-4 is expressed in the dorsal neural tube throughout the time when neural crest cells are migrating, but is decreased coincident with the timing of melanoblast migration. This expression pattern suggests that BMP signaling may be involved in neural and glial cell differentiation or repression of melanogenesis. Purified BMP-4 reduces the number of pigment cells in culture while increasing the number of neurons and glial cells, also without affecting proliferation. Our data suggest that Wnt signaling specifies melanocytes at the expense of the neuronal and glial lineages, and further, that Wnt and BMP signaling have antagonistic functions in the specification of the trunk neural crest.  相似文献   

6.
Neural crest cells migrate along two pathways in the trunk: the ventral path, between the neural tube and somite, and the dorsolateral path, between the somite and overlying ectoderm. In avian embryos, ventral migration precedes dorsolateral migration by nearly 24 h, and the onset of dorsolateral migration coincides with the cessation of ventral migration. Neural crest cells in the ventral path differentiate predominantly as neurons and glial cells of the peripheral nervous system, whereas those in the dorsolateral path give rise to the melanocytes of the skin. Thus, early- and late-migrating neural crest cells exhibit unique morphogenetic behaviors and give rise to different subsets of neural crest derivatives. Here we present evidence that these differences reflect the appearance of specified melanocyte precursors, or melanoblasts, from late- but not early-migrating neural crest cells. We demonstrate that serum from Smyth line (SL) chickens specifically immunolabels melanocyte precursors, or melanoblasts. Using SL serum as a marker, we first detect melanoblasts immediately dorsal and lateral to the neural tube beginning at stage 18, which is prior to the onset of dorsolateral migration. At later stages every neural crest cell in the dorsolateral path is SL-positive, demonstrating that only melanoblasts migrate dorsolaterally. Thus, melanoblast specification precedes dorsolateral migration, and only melanoblasts migrate dorsolaterally at the thoracic level. Together with previous work (Erickson, C. A., and Goins, T. L.,Development121, 915–924, 1995), these data argue that specification as a melanoblast is a prerequisite for dorsolateral migration. This conclusion suggested that the delay in dorsolateral migration (relative to ventral migration) may reflect a delay in the emigration of melanogenic neural crest cells from the neural tube. Several experiments support this hypothesis. There are no melanoblasts in the ventral path, as revealed by the absence of SL-positive cells in the ventral path, and neural crest cells isolated from the ventral path do not give rise to melanocytes when explanted in culture, suggesting that early, ventrally migrating neural crest cells are limited in their ability to differentiate as melanocytes. Similarly, neural crest cells that emigrate from the neural tubein vitroduring the first 6 h fail to give rise to any melanocytes or SL-positive melanoblasts, whereas neural crest cells that emigrate at progressively later times show a dramatic increase in melanogenesis under identical culture conditions. Thus, the timing of dorsolateral migration at the thoracic level is ultimately controlled by the late emigration of melanogenic neural crest cells from the neural tube.  相似文献   

7.
Stem cell factor (SCF) and endothelin 3 (EDN3) are both necessary for melanocyte development. We have established an immortal cell population of neural crest cells from C57BL/6 mice, cultivating them with SCF, EDN3 and 15% fetal calf serum without feeder cells, and have designated that line as C57NCC SE. C57NCC SE consists of a population of melanocytes in various stages of differentiation. We used a single-cell cloning method, in which only one cell is transferred to each new culture plate, and succeeded in establishing an immortal cell line named NCCmelan5. All NCCmelan5 cells were positive for KIT (SCF receptor), HMB45 (human melanosomal antigen), tyrosinase-related protein-1 (TYRP1), tyrosinase-related protein-2 (TYRP2), tyrosinase and endothelin receptor B (EDNRB) and all could oxidize 3,4-dihydroxyphenylalanine (DOPA) to form melanin. Measurement of their DNA content revealed that 88.6% of the cells were in the G0-G1 phase, suggesting that they retained normal DNA ploidy. Thus, NCCmelan5 cells have the characteristics of mature melanocytes except that they are immortal; these cells may prove useful to study factors that directly affect melanogenesis and melanocyte development without the influence of feeder cells. It is clear that our attempt to establish immortal cell lines from murine neural crest cells would have never been successful without the addition of SCF and EDN3, since C57NCC SE and NCCmelan5 cells require those factors to proliferate.  相似文献   

8.
Endothelin receptors B (Ednrb) are involved in the development of the enteric and melanocytic lineages, which originate from neural crest cells (NCCs). In mice, trunk NCCs and their derivatives express only one Ednrb. In quail, trunk NCCs express two Ednrb: Ednrb and Ednrb2. Quail Ednrb is expressed in NCCs migrating along the ventral pathway, which gives rise to the peripheral nervous system, including enteric ganglia. Ednrb2 is upregulated in NCCs before these cells enter the dorsolateral pathway. The NCCs migrating along the dorsolateral pathway are melanocyte precursors. We analyzed the in vitro differentiation and in ovo migration of mouse embryonic stem (ES) cells expressing and not expressing Ednrb2. We generated a series of transfected ES cell lines expressing Ednrb2. This receptor, like Ednrb, oriented genuine ES cells towards melanocyte lineage differentiation in vitro. The in ovo migration of Ednrb2-expressing ES cells was massively oriented towards the dorsolateral pathway, unlike that of WT or Ednrb-expressing ES cells. Thus, Ednrb2 is involved in melanoblast differentiation and migration.  相似文献   

9.
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question of when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.Key words: neural crest cell, multipotent, prespecification, neuropilin, semaphorin, migration, cell fate  相似文献   

10.
The Notch signaling pathway is an essential cell-cell interaction mechanism, which regulates processes such as cell proliferation, cell fate decisions, differentiation or stem cell maintenance. Pigmentation in mammals is provided by melanocytes, which are derived from the neural crest, and by the retinal pigment epithelium (RPE), which is part of the optic cup and hence orginates from neuroectoderm. The importance of functional Notch signaling in melanocytes has been unveiled recently. Here, the pathway is essential for the maintenance of proper hair pigmentation. Deletion of Notch1 and Notch2 or RBP-Jkappa in the melanocyte lineage resulted in a gene dosage-dependent precocious hair graying, due to the elimination of melanoblasts and melanocyte stem cells. Expression data support the idea that Notch signaling might equally be involved in development of the RPE. Furthermore, recent analyses indicate a possible role of Notch signaling in the development of melanoma. In this review, we address the essential role of Notch signaling in the regeneration of the melanocyte population during hair follicle cycles, and discuss data supporting the implication of this signaling pathway in RPE development and melanoma.  相似文献   

11.
Melanocytes originate from the neural crest in vertebrates and migrate to the body surface where they differentiate into functional cells. Genes involved in melanocyte differentiation can be classified into two groups. One of them consists of the functional genes that control proteins specific to the function of the melanocyte. As the representative gene of this category, albino (c) locus in the mouse is considered to control tyrosinase, the key enzyme in melanogenesis. cDNA for mouse tyrosinase has been cloned and sequenced. The cDNA can be used to detect tyrosinase mRNA synthesized during melanocyte differentiation. On the other hand, genes such as brown (b) or pink-eyed dilution (p) have been assumed to control melanosome proteins. The other category consists of genes that regulate the expression of these functional genes directly or indirectly. In the mouse, so-called white-spotting genes and genes of the agouti series are considered to fall into this category. Based on the fact that mutations at the white-spotting loci result in the absence of melanocytes in a particular area of skin, it is assumed that some of these loci control the factors that promote either differentiation or migration of melanoblasts and are candidates for the classic regulator genes Genes at the agouti (a) locus in the mouse determine the type of melanin synthesized in hair follicle melanocytes, that is eumelanin or pheomelanin. An interesting feature of this locus is that the site of gene action is not within the melanocytes but in the cells surrounding them. The results of our study indicate that the gene product of the a-locus interacts with α-MSH at the α-MSH receptor site, regulates the cellular cAMP level via a signal transduction system and, in turn, determines the type of melanin synthesized in the cells.  相似文献   

12.
13.
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.  相似文献   

14.
Hair follicles and sweat glands are recognized as reservoirs of melanocyte stem cells (MSCs). Unlike differentiated melanocytes, undifferentiated MSCs do not produce melanin. They serve as a source of differentiated melanocytes for the hair follicle and contribute to the interfollicular epidermis upon wounding, exposure to ultraviolet irradiation or in remission from vitiligo, where repigmentation often spreads outwards from the hair follicles. It is unknown whether these observations reflect the normal homoeostatic mechanism of melanocyte renewal or whether unperturbed interfollicular epidermis can maintain a melanocyte population that is independent of the skin's appendages. Here, we show that mouse tail skin lacking appendages does maintain a stable melanocyte number, including a low frequency of amelanotic melanocytes, into adult life. Furthermore, we show that actively cycling differentiated melanocytes are present in postnatal skin, indicating that amelanotic melanocytes are not uniquely relied on for melanocyte homoeostasis.  相似文献   

15.
Neurofibromatosis type 1 (NF1) is a common human genetic disease involving various neural crest (NC)-derived cell types, in particular, Schwann cells and melanocytes. The gene responsible for NF1 encodes the protein neurofibromin, which contains a domain with amino acid sequence homology to the ras-guanosine triphosphatase activating protein, suggesting that neurofibromin may play a role in intracellular signaling pathways regulating cellular proliferation or differentiation, or both. To determine whether neurofibromin plays a role in NC cell development, we used antibodies raised against human neurofibromin fusion proteins in western blot and immunocytochemical studies of early avian embryos. These antibodies specifically recognized the 235 kD chicken neurofibromin protein, which was expressed in migrating trunk and cranial NC cells of early embryos (E1.5 to E2), as well as in endothelial and smooth muscle cells of blood vessels and in a subpopulation of non-NC-derived cells in the dermamyotome. At slightly later stages (E3 to E5), neurofibromin immunostaining was observed in various NC derivatives, including dorsal root ganglia and peripheral nerves, as well as non-NC-derived cell types, including heart, skeletal muscle, and kidney. At still later stages (E7 to E9), neurofibromin immunoreactivity was found in almost all tissues in vivo. To determine whether the levels of neurofibromin changed during melanocyte and Schwann cell development, tissue culture experiments were performed. Cultured NC cells were found to express neurofibromin at early time points in culture, but the levels of immunoreactivity decreased as the cells underwent pigmentation. Schwann cells, on the other hand, continued to express neurofibromin in culture. These data suggest, therefore, that neurofibromin may play a role in the development of both NC cells and a variety of non-NC-derived tissues. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The microenvironment is thought to play a key role in the control of neural crest cell diversification. To investigate its role in melanocyte differentiation we mapped the temporal and spatial distribution of pigmented melanocytes in embryonic chick skin and determined, by experimental means, the route taken by migrating melanocytes in the skin. We show that the New Hampshire Red/Black Australorp crossbreed exhibits melanization from 5 days of incubation (2 1/2 days earlier than is reported in other breeds). Contrary to previous reports our findings show that melanization is at first predominantly dermal. Both dermal and epidermal melanocyte numbers increase until Day 8, whereafter there is a dramatic decline in dermal melanocytes and by Day 10, melanocytes are almost exclusively located in the epidermis. Using homeotypic and heterotypic combinations of white and red/black dermis and epidermis we have demonstrated that premelanocytes arrive in the dermis of the trunk by Day 3 and begin to move into the epidermis from Day 4 onward. Results from these grafts and from tritium labeling studies strongly suggest that there is little or no reverse migration of premelanocytes from epidermis to dermis. Our findings indicate that overt melanocyte differentiation is not dependent on location in an epidermal environment, and that melanogenesis does not signify the end-stage in the migration process. Further, they suggest that the early dermal mesenchyme plays a key role in controlling melanogenesis.  相似文献   

17.
We found previously that neural crest cells in turtle embryos migrated into the lung buds and melanocytes were located in the lungs. The finding suggested to us that the lungs provide a stimulatory factor(s) to the differentiation of neural crest cells into melanocytes. We have established lung cell lines to facilitate analysis of the interactions of neural crest cells with the environment in melanocyte development. One cell line, TLC-2, was found to produce a putative melanization-stimulating activity (MSA), which promoted the melanocyte differentiation in vitro of avian neural crest cells. The TLC-2-derived MSA was different from that of basic fibroblast growth factor (bFGF), α-melanocyte stimulating hormone (α-MSH), and steel factor (SLF). Its molecular weight was estimated to be within the range of 150 kD. Our findings suggest that MSA may be a novel factor exercising a positive control over melanocyte differentiation.  相似文献   

18.
Summary Neural crest cells from quail embryos grown in standard culture dishes differentiate almost entirely into melanocytes within 4 or 5 days when chick embryo extract (CEE) or occasional lots of fetal calf serum (FCS) are included in the medium. Gel fractionation showed that the pigment inducing factor(s) present in these media is of high molecular weight (> 400 K daltons). In the absence of CEE, the neural tube can also stimulate melanocyte differentiation. Culture medium supplemented by selected lots of FCS permits crest cell proliferation but little overt differentiation after up to 2 weeks in culture if the neural tube is removed within 18 h of explantation in vitro. Subsequent addition of CEE to such cultures promotes complete melanocyte differentiation. Crest cells from White leghorn chick embryos also differentiate into melanocytes in the presence of CEE, but do not survive well in its absence. Melanocyte differentiation of crest cells from both quail and chick embryos can by suppressed by culturing under a dialysis membrane, even in the presence of the neural tube and CEE, but neuronal differentiation appears greatly enhanced.  相似文献   

19.
The paired box gene 3 (Pax3) is expressed during pigment cell development. We tested whether the targeted allele Pax3(GFP) can be used as a reporter gene for pigment cells in the mouse. We found that enhanced green fluorescent protein (GFP) can be seen readily in every melanoblast and melanocyte in the epidermis and hair follicles of Pax3(GFP/+) heterozygotes. The GFP was detected at all differentiation stages, including melanocyte stem cells. In the dermis, Schwann cells and nestin-positive cells of the piloneural collars resembling the nestin-positive hair follicle multipotent stem cells exhibited a weaker GFP signal. Pigment cells could be purified by fluorescent activated cell sorting and grown in vitro without feeder cells, giving pure cultures of melanocytes. The Schwann cells and nestin-positive cells of the piloneural collars were FACS-isolated based on their weak expression of GFP. Thus Pax3(GFP) can discriminate distinct populations of cells in the skin.  相似文献   

20.
Melanocytes characterized by the activities of tyrosinase, tyrosinase‐related protein (TRP)‐1 and TRP‐2 as well as by melanosomes and dendrites are located mainly in the epidermis, dermis and hair bulb of the mammalian skin. Melanocytes differentiate from melanoblasts, undifferentiated precursors, derived from embryonic neural crest cells. Because hair bulb melanocytes are derived from epidermal melanoblasts and melanocytes, the mechanism of the regulation of the proliferation and differentiation of epidermal melanocytes should be clarified. The regulation by the tissue environment, especially by keratinocytes is indispensable in addition to the regulation by genetic factors in melanocytes. Recent advances in the techniques of tissue culture and biochemistry have enabled us to clarify factors derived from keratinocytes. Alpha‐melanocyte‐stimulating hormone, adrenocorticotrophic hormone, basic fibroblast growth factor, nerve growth factor, endothelins, granulocyte‐macrophage colony‐stimulating factor, steel factor, leukemia inhibitory factor and hepatocyte growth factor have been suggested to be the keratinocyte‐derived factors and to regulate the proliferation and/or differentiation of mammalian epidermal melanocytes. Numerous factors may be produced in and released from keratinocytes and be involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes through receptor‐mediated signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号