首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fimbriae are important in the adherence of many bacterial species to the surfaces they eventually colonize. Porphyromonas (Bacteroides) gingivalis fimbriae appear to mediate adherence to oral epithelial cells and the pellicle-coated tooth surface. The role and contribution of fimbriae in the binding of P. gingivalis to hydroxyapatite (HAP) coated with saliva as a model for the pellicle-coated tooth surface were investigated. 3H-labeled P. gingivalis or the radioiodinated purified fimbriae were incubated with 2 mg of HAP beads coated with whole human saliva (sHAP) and layered on 100% Percoll to separate unbound from sHAP-bound components. The radioactivity of the washed beads was a measure of the bound components. The binding of P. gingivalis 2561 (381) cells and that of purified fimbriae were concentration dependent and saturable at approximately 10(8) cells and 40 micrograms of fimbriae added, respectively. The addition of fimbriae inhibited binding of P. gingivalis to sHAP beads by 65%, while the 75-kDa protein, which is another major surface component of P. gingivalis 2561, did not show significant inhibition, suggesting that the fimbriae are important in adherence. Encapsulated and sparsely fimbriated P. gingivalis W50 did not bind to sHAP beads. On the basis of the predicted sequence of the fimbrillin, a structural subunit of fimbriae, a series of peptides were synthesized and used to localize the active fimbrillin domains involved in P. gingivalis adherence to sHAP beads. Peptides from the carboxyl-terminal one-third of the fimbrillin strongly inhibited P. gingivalis binding to sHAP beads. Active residues within the sequence of inhibitory peptide 226-245 (peptide containing residues 226 to 245) and peptide 293-306 were identified by using smaller fragments prepared either by trypsin cleavage of the peptide 226-245 or by synthesis of smaller segments of peptide 293-306. Hemagglutinin activity, lectinlike binding, and ionic interaction did not seem to be involved in this binding since lysine, arginine, carbohydrates, and calcium ions failed to affect the binding of P. gingivalis. The observation that poly-L-lysine, bovine serum albumin, and defatted bovine serum albumin, even at high concentrations, only partially blocked the binding of P. gingivalis indicates that hydrophobic interactions are not the major forces involved in P. gingivalis binding to sHAP beads. Protease inhibitors such as EDTA, leupeptin, pepstatin, 1,10-phenanthroline, and phenylmethylsulfonyl fluoride did not interfere with the binding of P. gingivalis. However, the binding of P. gingivalis to trypsin- or chymotrypsin-pretreated sHAP beads was reduced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
In this study, we demonstrate that Porphyromonas gingivalis fimbrillin, a major component of bacterial fimbriae, is one of the fibronectin-binding proteins and that fibronectin is a potent inhibitor of the adherence of the bacteria to host cells and of the pathogenesis of the bacterium that acts by binding to the fimbriae. A Western blotting (immunoblotting) assay showed that fibronectin binds strongly to P. gingivalis fimbrillin. The fimbrial binding to fibronectin was also evidenced by a binding assay involving 125I-labeled fimbriae. Furthermore, fibronectin markedly inhibited the fimbria-induced expression of interleukin-1beta and neutrophil-specific chemoattractant KC genes in macrophages. The inhibitory action depended on the fimbrial interaction with heparin-binding and cell attachment domains in the fibronectin structure. The binding of P.gingivalis to mouse peritoneal macrophages via its fimbriae was inhibited by fibronectin. Fibronectin also inhibited the bacterial cell-induced expression of interleukin-1beta and KC genes in the macrophages. These results demonstrate the importance of fibronectin as a modulator of the pathogenic mechanism of P. gingivalis, a pathogen that causes adult periodontal disease.  相似文献   

3.
The adherence of Porphyromonas gingivalis to host cells is likely a prerequisite step in the pathogenesis of P. gingivalis-induced periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are shown to be involved in this process. Little is known regarding epithelial receptor(s) involved in binding of P. gingivalis fimbriae. Using an overlay assay with purified P. gingivalis fimbriae as a probe, two major epithelial cell proteins with masses of 50 and 40 kDa were identified by immunoblotting with fimbria-specific antibodies. Iodinated purified fimbriae also bound to the same two epithelial cell proteins. An affinity chromatography technique was utilized to isolate and purify the epithelial components to which P. gingivalis fimbriae bind. Purified fimbriae were coupled to CNBr-activated Sepharose-4B, and the solubilized epithelial cell extract proteins bound to the immobilized fimbriae were isolated from the column. A major 50-kDa component and a minor 40-kDa component were purified and could be digested with trypsin, suggesting that they were proteins. These affinity-eluted 50- and 40-kDa proteins were then subjected to amino-terminal sequencing, and no sequence could be determined, suggesting that these proteins have blocked amino-terminal residues. CNBr digestion of the 50-kDa component resulted in an internal sequence homologous to that of Keratin I molecules. Further evidence that P. gingivalis fimbriae bind to cytokeratin molecule(s) comes from studies showing that multicytokeratin rabbit polyclonal antibodies cross-react with the affinity-purified 50-kDa epithelial cell surface component. Also, binding of purified P. gingivalis fimbriae to epithelial components can be inhibited in an overlay assay by multicytokeratin rabbit polyclonal antibodies. Furthermore, we showed that biotinylated purified fimbriae bind to purified human epidermal keratin in an overlay assay. These studies suggest that the surface-accessible epithelial cytokeratins may act as receptor(s) for P. gingivalis fimbriae. We hypothesize that adherence of P. gingivalis fimbriae to cytokeratin may be important for colonization of oral mucous membranes and possibly also for activation of epithelial cells.  相似文献   

4.
Protamines (salmine prepared from sperm DNA of salmon and clupeine from herring sperm), which are basic peptides rich in arginine, were found to inhibit the proteolytic activity of arginine-specific cysteine protease (RC-protease) from Porphyromonas gingivalis. Lineweaver-Burk plot analysis revealed that the protamines competitively inhibited proteolytic activity with cleavage of benzoyl-L-arginine-p-nitroanilide, a synthetic substrate of RC-protease. Furthermore, the protamines were capable of binding strongly to P. gingivalis fimbriae and inhibited fimbrial interaction with immobilized fibronectin. These results clearly show that protamines are potent inhibitors of the proteolytic and adhesive activities of P. gingivalis.  相似文献   

5.
To assess the direct effects of Bacteroides gingivalis on periodontal cells, human gingival fibroblasts were cultured in the presence of B. gingivalis extracts or a trypsinlike enzyme partially purified from the bacteria by chromatography on benzamidine-Sepharose and Sephacryl S-200. Analysis of cell surface glycoproteins by the periodate-[3H]borohydride labeling technique combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-fluorography demonstrated that fibronectin and some other high-molecular-weight cell surface glycoproteins were degraded by a 35,000-Mr(35K) B. gingivalis protease. Immunostaining of the fibroblast cultures showed degradation of intercellular matrix fibronectin by the 35K protease. The pattern of fibronectin degradation was monitored by examining the reaction products with the SDS-PAGE-immunoblotting technique. The protease degraded fibronectin rapidly and more extensively than did corresponding amounts of pancreatic trypsin. Collagenase secretion by the fibroblasts was assayed by incubating cell culture medium with soluble type I [3H]collagen at 25 degrees C followed by SDS-PAGE-fluorography analysis of the reaction products. The medium was also assayed for plasminogen activator activity by using a casein-agarose diffusion plate assay. The fibroblasts cultured with the 35K protease secreted increased amounts of collagenase and plasminogen activator into the medium. The results suggest that periodontal infection by B. gingivalis causes proteolytic damage of the host cell surface structures. Concomitantly, B. gingivalis may induce the cells to degrade their pericellular matrix.  相似文献   

6.
Porphyromonas gingivalis 381 fimbriae, their synthetic peptide segments, and lipopolysaccharide (LPS) were examined for hemagglutinating and migration-stimulating activities. P. gingivalis 381 fimbriae clearly caused hemagglutination, and several oligopeptide segments such as FP381(61-80), FP381(171-185), and FP381(302-321), corresponding to the amino acid residue numbers based on the amino acid sequence of fimbrillin proposed by Dickinson et al. (D. P. Dickinson, M. A. Kubiniec, F. Yoshimura, and R. J. Genco, J. Bacteriol. 170:1658-1665, 1988), were also demonstrated to agglutinate erythrocytes although less effectively than the native fimbriae. Furthermore, P. gingivalis 381 LPS but not Escherichia coli O55:B5 LPS definitely exhibited hemagglutination. P. gingivalis fimbriae as well as their synthetic peptides possessing hemagglutinating activity enhanced the chemotaxically induced migration of human peripheral blood monocytes. The results of the analyses using synthetic peptide FP381(61-80), its related compounds, and an analog suggested that the amino acid sequence XLTXXLTXXNXX within fimbrial protein molecules may play an important role structurally in the attachment of the protein to host cells such as erythrocytes and monocytes.  相似文献   

7.
Porphyromonas gingivalis is a periodontal pathogen capable of invading primary cultures of normal human gingival epithelial cells (NHGEC). Involvement of P. gingivalis fimbriae in the invasion process was examined. Purified P. gingivalis 33277 fimbriae blocked invasion of this organism into NHGEC in a dose-dependent manner. DPG3, a P. gingivalis fimbria-deficient mutant, was impaired in its invasion capability approximately eightfold compared to its parent, strain 381. However, adherence of the mutant was only 50% reduced compared to the parent. Biotin labeling of NHGEC surface proteins revealed that two fimbriated strains, but not DPG3, bound a 48-kDa NHGEC protein. Adhesin-receptor interactions, such as fimbriae binding to a 48-kDa NHGEC surface receptor, may trigger activation of eukaryotic proteins involved in signal transduction and/or provoke the generation of surface P. gingivalis molecules required for internalization.  相似文献   

8.
Porphyromonas gingivalis, one of the causative agents of adult periodontitis, attaches and forms biofilms on substrata of Streptococcus gordonii. Coadhesion and biofilm development between these organisms requires the interaction of the short fimbriae of P. gingivalis with the SspB streptococcal surface polypeptide. In this study we investigated the structure and binding activities of the short fimbriae of P. gingivalis. Electron microscopy showed that isolated short fimbriae have an average length of 103 nm and exhibit a helical structure with a pitch of ca. 27 nm. Mfa1, the major protein subunit of the short fimbriae, bound to SspB protein, and this reaction was inhibited by purified recombinant Mfa1 and monospecifc anti-Mfa1 serum in a dose-dependent manner. Complementation of a polar Mfa1 mutant with the mfa1 gene restored the coadhesion phenotype of P. gingivalis. Hence, the Mfa1 structural fimbrial subunit does not require accessory proteins for binding to SspB. Furthermore, the interaction of Mfa1 with SspB is necessary for optimal coadhesion between P. gingivalis and S. gordonii.  相似文献   

9.
Fimbriae of Porphyromonas gingivalis are thought to play an important role in the colonization and invasion of periodontal tissues. In this study, we analyzed the interactions of P. gingivalis fimbriae with human hemoglobin, fibrinogen, and salivary components (i.e., proline-rich protein [PRP], proline-rich glycoprotein [PRG], and statherin) based on surface plasmon resonance (SPR) spectroscopy with a biomolecular interaction analyzing system (BIAcore). The real-time observation showed that the fimbriae interacted more quickly with hemoglobin and PRG than with other proteins and more intensely with fibrinogen. The significant association constant (ka) values obtained by BIAcore demonstrated that the interactions between fimbriae and these host proteins are specific. These estimated Ka values were not too different; however, the Ka values for hemoglobin (2.43 x 10(6)) and fibrinogen (2.16 x 10(6)) were statistically greater than those for the salivary proteins (1.48 x 10(6) to 1.63 x 10(6)). The Ka value of anti-fimbriae immunoglobulin G for fimbriae was estimated to be 1. 22 x 10(7), which was 6.55-fold higher than the mean Ka value of the host proteins. Peptide PRP-C, a potent inhibitor of PRP-fimbriae interaction, dramatically inhibited fimbrial association to PRP and PRG and was also inhibitory against other host proteins by BIAcore. The binding of fimbriae to these proteins was also evaluated by other methods with hydroxyapatite beads or polystyrene microtiter plates. The estimated binding abilities differed considerably, depending on the assay method that was used. It was noted that the binding capacity of PRP was strongly diminished by immobilization on a polystyrene surface. Taken together, these findings suggest that P. gingivalis fimbriae possess a strong ability to interact with the host proteins which promote bacterial adherence to the oral cavity and that SPR spectroscopy is a useful method for analyzing specific protein-fimbriae interactions.  相似文献   

10.
The Porphyromonas gingivalis fimbria is an important virulence factor involved in the adherence and colonization of the organism in the oral cavity. In this study, we transformed this organism with a gene, fimA381, encoding the fimbrial subunit of P. gingivalis 381 (fimbrillin) by using the host-vector system that we developed previously and examined expression of the cloned fimA381 gene. The recombinant plasmid pYHF2 was constructed by ligating a fragment containing the fimA381 gene into the plasmid vector pYH420 and transformed into the restriction-deficient P. gingivalis host YH522. pYHF2 was autonomously maintained in YH522 cells, and the fimbrillin polypeptide (recombinant fimbrillin) was fully expressed. The molecular mass of the recombinant fimbrillin was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as 41 kDa, which was identical to that of the native fimbrillin of strain 381. The amino acid sequences of the 20 amino-terminal residues of the recombinant fimbrillin and the native fimbrillin of the strain 381 were identical. In addition, characteristic long and thin fimbrial structures (recombinant fimbriae) that were distinguishable from the host's native fimbriae when examined by immunogold electron microscopy were observed around the cell surface of the transformants containing the fimA381 gene. These results suggested that transformation of fimA gene from a different strain of P. gingivalis followed by accumulation of the mature fimbrial subunit protein was sufficient for production of fimbrial structures that were observable by electron microscopy.  相似文献   

11.
Isogenic mutants of Porphyromonas gingivalis which differ in the expression of fimbriae were used to examine the contribution of fimbriae in invasion of a human oral epithelial cell line (KB). At a multiplicity of infection of 100, the wild-type P. gingivalis strains 33277, 381, and A7436 exhibited adherence efficiencies of 5.5, 0.11, and 5.0%, respectively, and invasion efficiencies of 0.15, 0.03, and 0.10%, respectively. However, adherence to and invasion of KB cells was not detected with the P. gingivalis fimA mutants, DPG3 and MPG1. Adherence of P. gingivalis wild-type strains to KB cells was completely inhibited by the addition of hyperimmune sera raised to the major fimbriae. Examination by electron microscopy of invasion of epithelial cells by the P. gingivalis wild-type strain 381 revealed microvillus-like extensions around adherent bacteria; this was not observed with P. gingivalis fim mutants. Taken together, these results indicate that the P. gingivalis major fimbriae are required for adherence to and invasion of oral epithelial cells.  相似文献   

12.
A protein was extracted from whole cells of Prevotella intermedia ATCC 25611 with sodium lauroylsarcosine and purified by chromatography on a DEAE-Sepharose fast-flow column. The The apparent molecular weight of the protein was 55,000. A mouse polyclonal antibody specific for the protein recognized the cell surface structure of P. intermedia and also reacted with proteins in lysates of other black-pigmented anaerobic bacteria, such as Porphyromonas endodontalis and Prevotella melaninogenica, but not with those in lysates of Porphyromonas gingivalis or with the purified fimbriae of P. gingivalis 381. The N-terminal sequence of the 55-kDa protein showed only low homology with the cell surface proteins of any black-pigmented bacteria reported to date. The level of immunoglobulin G antibody to the antigen was higher in the sera of patients with periodontitis than in the sera of healthy volunteers. The protein induced interleukin-1 alpha, -1 beta, -6, and -8 and tumor necrosis factor alpha in human peripheral blood mononuclear cell cultures and interleukin-1 beta and -6 in human umbilical vascular endothelial cell and gingival fibroblast cultures. The protein induced interleukin-6 and tumor necrosis factor alpha activities in peritoneal macrophages from C3H/HeJ as well as from C3H/HeN mice and also induced cytokine activities in the sera of both strains of mice primed with muramyldipeptide.  相似文献   

13.
Porphyromonas gingivalis fimbriae elicit many responses in eukaryotic cells, including mitogenicity, cytokine production, epithelial cell invasion, and cellular immune response. Specific domains of the major fimbrial protein (FimA) have been shown to be important in triggering some of these functions. The goal of the present study was to identify the domain(s) of P. gingivalis FimA responsible for specific interaction with human mucosal epithelial cells. Fimbriated P. gingivalis strains have been shown to bind to buccal epithelial cells, whereas nonfimbriated strains bind at low levels or not at all. This and other studies provide evidence that FimA mediates the adherence of P. gingivalis to oral epithelial cells. To determine the specific region(s) of P. gingivalis FimA involved in epithelial cell binding, specific antipeptide antibodies were used to inhibit the binding of iodinated purified fimbriae as well as the binding of P. gingivalis cells to epithelial cells. Antibodies directed against peptides 49 to 68 (VVMANTAGAMELVGKTLAEVK) and 69 to 90 (ALTTELTAENQEAAGLIMTAEP) were found to highly inhibit both the binding of fimbriae and the binding of P. gingivalis cells to epithelial cells. The antibody against FimA peptides 69 to 90 also reacted with P. gingivalis fimbriae in immunogold labeling and immunoblot analysis, thereby indicating that this peptide domain is exposed on the surface of fimbriae. Our results suggest that the amino-terminal domain corresponding to amino acid residues 49 to 90 of the fimbrillin protein is a major epithelial cell binding domain of P. gingivalis fimbriae.  相似文献   

14.
Arginine carboxypeptidase was isolated from the cytoplasm of Porphyromonas gingivalis 381 and purified by DEAE-Sephacel column chromatography, followed by high-performance liquid chromatography on DEAE-5PW and TSK G2000SW(XL). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed the presence of three major bands at 42, 33, and 32 kDa with identical N-terminal sequences. By Western blotting analysis and immunoelectron microscopy, the arginine carboxypeptidase was found to be widely distributed in the cytoplasm and on the surface of the outer membrane. The open reading frame corresponding to the N-terminal amino acids of the arginine carboxypeptidase was detected by a search of the sequence of the P. gingivalis W83 genome. This sequence showed homology with mammalian carboxypeptidases (M, N, and E/H) and included a zinc-binding region signature, suggesting that the enzyme is a member of the zinc carboxypeptidase family. The purified enzyme was inhibited by EGTA, o-phenanthroline, DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, and some metal ions, such as Cu(2+), Zn(2+), and Cd(2+). On the other hand, Co(2+) activated the enzyme. The enzyme released arginine and/or lysine from biologically active peptides containing these amino acids at the C terminus but did not cleave substrates when proline was present at the penultimate position. These results indicate that the arginine carboxypeptidase produced by P. gingivalis is an exo type of metallocarboxypeptidase. This enzyme may function to release arginine in collaboration with an arginine aminopeptidase, e.g., Arg-gingipain, to obtain specific amino acids from host tissues during the growth of P. gingivalis.  相似文献   

15.
Cell surface integrins mediate interactions between cells and their extracellular matrix and are frequently exploited by a range of bacterial pathogens to facilitate adherence and/or invasion. In this study we examined the effects of Porphyromonas gingivalis proteases on human gingival fibroblast (HGF) integrins and their fibronectin matrix. Culture supernatant from the virulent strain W50 caused considerably greater loss of the beta1 integrin subunit from HGF in vitro than did that of the beige-pigmented strain W50/BE1. Prior treatment of the W50 culture supernatant with the protease inhibitor Nalpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) blocked its effects on cultured cells, indicating that this process is proteolytically mediated. Purified arginine-specific proteases from P. gingivalis W50 were able to mimic the effects of the whole-culture supernatant on loss of beta1 integrin expression. However purified RI, an alpha/beta heterodimer in which the catalytic chain is associated with an adhesin chain, was 12 times more active than RIA, the catalytic monomer, in causing loss of the alpha5beta1 integrin (fibronectin receptor) from HGF. No effect was observed on the alphaVbeta3 integrin (vitronectin receptor). The sites of action of RI and RIA were investigated in cells exposed to proteases pretreated with TLCK to inactivate the catalytic component. Use of both monoclonal antibody 1A1, which recognizes only the adhesin chain of RI, and a rabbit antibody against P. gingivalis whole cells indicated localization of RI on the fibroblasts in a clear, linear pattern typical of that seen with fibronectin and alpha5beta1 integrin. Exact colocalization of RI with fibronectin and its alpha5beta1 receptor was confirmed by double labeling and multiple-exposure photomicroscopy. In contrast, RIA bound to fibroblasts in a weak, patchy manner, showing only fine linear or granular staining. It is concluded that the adhesin component of RI targets the P. gingivalis arginine-protease to sites of fibronectin deposition on HGF, contributing to the rapid loss of both fibronectin and its main alpha5beta1 integrin receptor. Given the importance of integrin-ligand interactions in fibroblast function, their targeted disruption by RI may represent a novel mechanism of damage in periodontal disease.  相似文献   

16.
Bacterial fimbriae mediate cell adhesion and are important in colonization. Fimbrial proteins from strains of Porphyromonas (Bacteroides) gingivalis isolated from different individuals were compared for their size, amino-terminal sequence, and antigenic diversity. Two major protein components of the crude fimbrial preparations differed in apparent molecular mass, ranging from 41 to 49 kDa for the fimbrillin monomer and from 61 to 78 kDa for the other major protein. The amino-terminal sequence of the antigenically related group of proteins of the fimbrillin monomer in the 41- to 49-kDa range showed significant homology; however, minor sequence heterogeneity was observed, mainly in residues 4 to 6. One of the observed amino-terminal sequences, AFGVGDDESKVAKLTVMVYNG, resembled the deduced sequence of P. gingivalis 381 (D.P. Dickinson, M. K. Kubiniec, F. Yoshimura, and R.J. Genco, J. Bacteriol. 170:1658-1665, 1988). Fimbriae from all the strains of P. gingivalis showing this sequence contained a fimbrillin monomer of 43 kDa and showed a strong reaction with both polyclonal and monoclonal antibodies directed to the fimbriae from P. gingivalis 2561 (381). Fimbriae from strains showing amino-terminal sequence variations in residues 4 to 6 (i.e., substitution of VGD with either E or NAG) were more diverse in their molecular sizes. Most of these variant fimbriae showed weak reactions with the polyclonal antibodies and no reaction with the monoclonal antibodies induced to the fimbriae of strain 2561. No correlation could be established between the molecular size and immunological reactivity of the fimbrillin monomer of P. gingivalis strains. Strains 9-14K-1 and HG 564 not only showed markedly different sequences from the other three amino-terminal sequences but also did not react with either polyclonal or monoclonal antibodies to the fimbriae of strain 2561. Strains W50, W83, and AJW 5 failed to show any immunological reactivity with the antibodies to fimbrillin or fimbriae of strain 2561. Fimbriae from different strains revealed different immunologic reactions with rabbit antisera to each of the synthetic peptides of residues 59-78 (peptide I), 79-100 (peptide J), and 91-108 (peptide E) of strain 381. These results suggest that P. gingivalis fimbrillin subunits have size, sequence, and antigenic heterogeneity among the strains and that these differences may be important in the function and immune reactivities of the fimbriae.  相似文献   

17.
18.
An intracellular membrane-free, trypsinlike protease was isolated from cells of Bacteroides gingivalis 381. The protease was extracted from the cells by ultrasonic treatment and was purified about 250-fold with a recovery of 2% by sequential procedures. The properties of the protease were as follows: its optimal pH was 8.5; its activity was almost completely lost on incubation at 50 degrees C for 15 min; its activity was inhibited by diisopropylfluorophosphate, p-toluenesulfonyl-L-lysine chloromethyl ketone hydrochloride, leupeptin, Mn2+, Cu2+, and Zn2+; it hydrolyzed casein, azocasein, N-alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA), bovine serum albumin, azocoll, and gelatin, but not N-alpha-benzoyl-DL-lysine-p-nitroanilide or human serum immunoglobulin A; its molecular weight was estimated as 45,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; and its Km values for azocasein and BAPNA were 1.11% and 0.19 mM, respectively.  相似文献   

19.
Fimbriae have been reported to play an important role in the adherence of Porphyromonas gingivalis to oral surfaces and possibly in triggering host responses. A structural subunit of the fimbriae, fimbrillin, has been shown to be important in binding of the bacterium to saliva-coated oral surfaces. In the present study, a coding region of the fimbrillin gene from P. gingivalis 2561 was amplified by the polymerase chain reaction and cloned into the pET-11d vector. The recombinant plasmid was transformed into Escherichia coli BL21, and protein expression was induced with isopropyl-beta-D-thiogalactopyranoside. The expressed protein was purified from insoluble inclusion bodies after solubilization with urea and gel filtration chromatography. The purified recombinant fimbrillin polypeptide, r-fim 10-337, corresponded to amino acid residues 10 to 337 of the deduced amino acid sequence of fimbrillin. In immunoblot analysis, r-fim 10-337 reacted with antibodies to fimbrillin purified from P. gingivalis, as well as with antibodies to synthetic peptides corresponding to the amino acid sequence of fimbrillin. The apparent molecular mass of r-fim 10-337 was estimated to be 41 kDa on sodium dodecyl sulfate-polyacrylamide gels. The r-fim 10-337 polypeptide was capable of inhibiting the binding of P. gingivalis 2561 to saliva-coated hydroxyapatite beads. These results suggest that the fimbrillin subunit polypeptide plays an important role in binding of P. gingivalis cells to saliva-coated surfaces. We describe here the successful expression and purification of a functionally and immunologically reactive recombinant P. gingivalis fimbrillin subunit from E. coli.  相似文献   

20.
Porphyromonas gingivalis is a fimbriated mucosal pathogen implicated in chronic periodontitis (CP). The fimbriae are required for invasion of the gingival mucosa and for induction of CP in animal models of periodontitis. CP is associated with infection of immature dendritic cells (DCs) by P. gingivalis in situ and with increased numbers of dermal DCs (DDCs) and mature DCs in the lamina propria. The role of fimbriae in gaining entry into human DCs and how this modulates the inflammatory and effector immune responses, however, have not been explored. To address this, we generated monocyte-derived DCs (MDDCs) in vitro which phenotypically and functionally resemble DDCs. We show here that virulent fimbriated P. gingivalis 381, in contrast to its fimbria-deficient mutant, P. gingivalis DPG3, efficiently gains entry to MDDCs in a manner dependent on active cell metabolism and cytoskeletal rearrangement. In addition, uptake of 381, unlike DPG3, induces DCs to undergo maturation, upregulate costimulatory molecules, and secrete inflammation cytokines interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor alpha, IL-10, and IL-12. Moreover, MDDCs pulsed with 381 also stimulated a higher autologous mixed lymphocyte reaction and induced a Th1-type response, with gamma interferon (IFN-gamma) being the main cytokine. Monocytes used as controls demonstrated fimbria-dependent uptake of 381 as well but produced low levels of inflammatory cytokines compared to MDDCs. When MDDCs were pulsed with recombinant fimbrillin of P. gingivalis (10 micro g/ml), maturation of MDDCs was also induced; moreover, matured MDDCs induced proliferation of autologous CD4(+) T cells and release of IFN-gamma. Thus, these results establish the significance of P. gingivalis fimbriae in the uptake of P. gingivalis by MDDCs and in induction of immunostimulatory Th1 responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号