首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 634 毫秒
1.
京津冀重霾期间PM_(2.5)来源数值模拟研究   总被引:5,自引:1,他引:4  
厘清PM2.5的来源是开展重霾污染防治的前提条件.本研究利用嵌套网格空气质量预报模式系统(NAQPMS)及其耦合的污染来源追踪技术,针对2013年1月我国中东部的重霾污染过程,定量模拟分析京津冀各城市PM2.5浓度的来源和相互贡献.研究结果表明,NAQPMS模式能够合理反映京津冀不同城市PM2.5浓度的变化特征.京津冀各城市近地面PM2.5浓度主要受本地排放影响,本地贡献率介于29.8%~63.7%.而800 m高空层各城市PM2.5浓度以外来贡献为主(69.3%~86.3%).在污染最严重的东南部地区(包括邢台、邯郸、沧州和衡水),PM2.5浓度受区域外的山东和河南的显著影响,贡献率可达25.2%~31.5%.因此,在京津冀区域内进行协同减排控制的同时,需进一步将山东、河南等省份纳入联防联控范围,才能有效防控重霾污染.  相似文献   

2.
朱媛媛  高愈霄  汪巍  鲁宁  许荣  刘冰  李健军 《环境科学》2020,41(10):4402-4412
为评估京津冀及周边区域重污染过程期间应急减排措施的效果,基于情景模拟的方法,采用NAQPMS模式和多种观测资料,分析了2019年10~12月期间京津冀及周边区域环境空气质量、重污染过程和气象条件概况,评估了模式24、72和144 h的PM2.5预报效果,并对应急减排措施的效果和不确定性进行了讨论.结果表明,2019年10~12月京津冀及周边"2+26"城市PM2.5平均浓度64 μg ·m-3,同比降低了10 μg ·m-3;区域性重污染过程4次,受影响城市重污染过程期间PM2.5平均浓度156 μg ·m-3."2+26"城市PM2.5气象条件评估指数(EMI)变化值范围为-15.6%~16.8%,EMI显示北京、天津和石家庄等12个城市气象条件与同期相比变差,变差程度范围为3.2%~16.8%.减排情景模拟分析显示应急减排措施有效减少了区域性重污染过程的发生,污染物峰值浓度降幅明显,未出现区域性严重污染过程.典型重污染期间,北京、石家庄、保定和唐山等城市PM2.5日均浓度削减2%~9%.区域应急减排措施促使"2+26"城市PM2.5季度均值分别降低1~3 μg ·m-3左右,区域性减排效果明显.  相似文献   

3.
凯风 《环境》2014,(3):48-49
正面对愈发严峻的空气污染形势,全国各地纷纷出台了大气重污染应急预案,《珠江三角洲大气重污染应急预案》也在日前正式印发。其中提出,当启动最高级别的区域I级响应时,将采取严格的强制性减排措施,包括中心城区实行机动车单双号限行,党政机关和企事业单位公务车封存30%~50%,大气污染物排放重点企业限产减排15%~30%,建筑施工、装修喷涂等行为也必须停止。  相似文献   

4.
利用Model-3/CMAQ及京津冀地区高分辨率排放源清单,选取文献[19]中污染峰值当天启动50%污染源削减方案的同时,进一步设置了3种污染源控制方案(峰值当天启动75%源削减;峰值日前1d、2d开始启动25%源削减),比较了峰值日前启动适量减排与峰值日当天启动大幅度减排的效果差异.结果表明:污染峰值当天启动50%、75%减排时,北京市PM2.5浓度下降率分布不均匀,高值区集中于PM2.5浓度高值区,减排后PM2.5浓度分布较减排前均匀.提前1~2d启动25%源削减时,峰值日北京市PM2.5浓度整体下降.城、郊PM2.5下降率均表现为当天减排50%小于提前1d开始减排25%;当天启动减排提高到75%时,城区PM2.5下降率大于提前2d启动25%减排,郊区表现为峰值前2d启动25%削减优于当天减排75%.将峰值前1d、2d启动25%减排分别与当天启动50%、75%减排时北京市峰值日PM2.5浓度下降率相减,北京市绝大部分区域下降率差值为正;峰值前1d、2d启动25%减排分别比峰值日启动50%、75%减排时北京市平均PM2.5多下降4.7μg/m3(6%)、2.9μg/m3(4%).综上所述,在污染峰值来临之前采取适量减排较污染当天才启动大幅度减排更有利于北京市整体空气质量达标.  相似文献   

5.
刘永乐  仝纪龙  谢南洪  杨宏  刘明 《环境工程》2018,36(12):194-199
运用排放系数法建立2016年兰州市道路移动源排放清单,并利用GIS技术和机动车速度-流量模型估算得到限行后的排放清单,对比执行限行措施前后限行区内机动车尾气的排放量和空间分布,得出结论:常态化尾号限行期间,限行区内机动车尾气CO、HC、NO_x、PM_(2.5)、PM_(10)和SO_2的年排放量分别为21 177.39,4 539.84,8 159.60,212.27,235.08,8.97 t;重污染天气下,执行单双号限行措施每天可减少限行区内机动车排放上述污染物的量分别为36.27,5.92,8.20,0.24,0.26,0.01 t,削减率分别为62.69%、47.69%、36.78%、40.59%、40.57%、33.00%;空间上,城关区中西部、七里河区北部、安宁区中部以及西固区中部区域减排效果最明显。  相似文献   

6.
2014年京津冀地区PM2.5浓度时空分布及来源模拟   总被引:3,自引:0,他引:3  
采用模式(CAMx)模拟与污染物、气象观测资料相结合的方式,分析了2014年京津冀地区PM2.5时空分布及来源特征.结果表明:PM2.5具有较为明显的时间变化规律,呈秋冬高、春夏低的规律和双峰型分布的日变化特征;重污染日PM2.5高浓度(PM2.5>150μg/m3)主要分布在太行山前的华北平原区,特别是北京、保定、石家庄一线,而太行山、燕山等西部及北部山区PM2.5浓度明显低于平原区;重污染日京津冀地区PM2.5平均浓度在150μg/m3以上的面积约占总面积的73%;重污染日北京、天津、石家庄市的PM2.5外来输送率分别为58%、54%、39%;2014年10月6~12日京津冀地区发生的一次重污染过程中污染物由南向北输送,区域输送对于各地区PM2.5浓度有着十分重要的影响.  相似文献   

7.
不同时刻污染减排对北京市PM2.5浓度的影响   总被引:1,自引:0,他引:1  
利用空气质量模式Model-3/CMAQ及京津冀地区高分辨率排放源清单,针对有代表性的污染时段(2012年2月7~16日),设置了5种不同时刻的减排方案(在污染峰值提前4d、提前3d、提前2d、提前1d及当天减排),对比在同样的减排比例下,不同时刻开始减排的效果差异.研究发现,提前采取减排控制措施比污染峰值当天开始减排对降低PM2.5浓度的影响更为明显,而且提前采取应急减排的时间越早,PM2.5浓度下降越明显.提前1d、2d、3d减排海淀站和城六区峰值浓度下降率分别为23%和22%、31%和30%、39%和38%,均明显高于当天减排的峰值浓度下降率10%和9%.但随着提前天数的增加,PM2.5峰值浓度进一步下降的幅度越来越小,减排效益较之前显著降低.提前4d减排海淀站和城六区峰值浓度下降率分别为40%和39%,提前4d减排和提前3d减排对降低污染峰值日PM2.5浓度的效果已没有太大差别.同时针对另一个污染时段(2012年1月11~20日)进行了相似的敏感性试验,得出了类似的结论.因此,针对某些污染事件的应急减排,综合考虑减排成本和减排效果,根据气象条件的预报,在可能引起重污染事件的不利气象条件来临时提前2~3d采取减排措施效果最好,既能有效降低PM2.5浓度,也可以避免因盲目长时间减排造成的成本过大.  相似文献   

8.
李珊珊  徐峻  孟凡  闫静 《环境工程》2015,33(12):84-89
采用轨迹模拟与观测资料相结合的方式,对北京市2014年10月6—12日1次典型空气重污染过程的大气环境背景、气象条件和形成原因进行分析。结果表明:京津冀区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,平均逆温强度每100 m为3.42℃,平均风速为1.56 m/s,平均湿度为83.13%;重污染过程中10月8—11日污染最重,北京ρ(PM_(2.5))日均值平均为264μg/m~3,且京津冀约20×104km~2国土面积处于重度污染水平;模拟结果显示污染最重的8—11日区域输送对北京PM_(2.5)贡献率在61%~69%;区域输送对北京PM2.5浓度起着更为重要的作用。  相似文献   

9.
为研究京津冀机动车污染控制政策对CO、HC、NOx、PM2.5、PM10等污染物的减排效果,建立了2014年高精度机动车排放清单,选取过去已经实施,未来规划实施及优化/劣化后的若干政策,设置4类共13种政策情景,与实际清单基准情景进行对比,识别各政策情景的排放变化,并对其中由政府给予补贴的政策进行成本收益核算.结果显示,淘汰低排放标准机动车带来的污染减排效果最好,在天津和河北对CO和HC的排放削减分别为53.19%,49.75%和51.28%,50.87%,达半数及以上;升级机动车发动机和燃油标准也能显著削减排放,在天津和河北对PM2.5、PM10的削减分别为17.01%,17.00%和21.95%,21.93%.政府补贴政策存在明显边际效应特征,排放标准高,重污染车少的北京单位成本的减排收益明显低于天津和河北,.河北和天津在考虑成本因素的基础上,应当逐步采纳北京的高标准减排政策;北京则可在一定条件下,将一部分低效的政府补贴通过合理方式转移支付给天津和河北,以提高政府投入的减排效率.  相似文献   

10.
京津冀及周边减排对北京市PM2.5浓度下降评估研究   总被引:2,自引:0,他引:2       下载免费PDF全文
刘俊  安兴琴  朱彤  翟世贤  李楠 《中国环境科学》2014,34(11):2726-2733
利用第三代区域空气质量模式CMAQ (Community Multiscale Air Quality)及京津冀地区高分辨的污染源排放清单,基于2011年、2012年和2013年秋冬季美国国家环境预报中心全球再分析资料的气象条件分析,选取2012年10月1日至12月30日作为代表性时段,模拟了PM2.5的浓度变化趋势,同时根据《京津冀及周边地区落实大气污染防治行动计划实施细则》和2012年到2017年污染源减排控制目标,进行了减排效果评估分析.结果显示,模式系统能较好捕捉PM2.5浓度的变化趋势,海淀站和上甸子站观测与模拟值的相关系数分别为0.71和0.63.主要污染源和污染物排放量削减30%~40%后,北京市PM2.5浓度发生了明显降低,海淀站、上甸子站和城六区的平均浓度下降率分别为(24.9±2.3)%,(20.2±2.7)%和(24.8±2.1)%.如果严格执行《京津冀及周边地区落实大气污染防治行动计划实施细则》,在气象条件和2012年相似情况下,到2017年,北京市城区PM2.5年均浓度控制在60μg/m3内的防治目标可以实现.  相似文献   

11.
2015年12月北京市一次重污染过程中PM_(2.5)特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
2015年入冬以来京津冀区域重污染频发,综合分析了2015年12月19—26日京津冀及周边地区发生的一次重污染过程中PM_(2.5)分布特征及成因。监测数据显示,2015年12月北京市重污染日共计13 d,累计月均值为151.8μg/m3。在12月19—26日一次重污染过程中,区域污染面积均超过40万km2,北京市单站PM_(2.5)小时均值超过800μg/m3。污染初期北京市南部地区PM_(2.5)浓度明显偏高,且PM_(2.5)极端高值出现在南部站点。污染输送阶段,北京市PM_(2.5)小时浓度在短时内呈爆发式增长,浓度增值是年均值的2~5倍。污染缓解阶段,偏北风作用,浓度明显下降。除了极端不利的天气形势外,区域散煤排放是造成重污染的重要原因;河北省唐山、保定、廊坊、石家庄等城市区域输送加重了污染程度。  相似文献   

12.
2020年春节期间由于新冠肺炎疫情的大范围暴发,包括北京在内的多个城市经济社会活动较长时间处于低水平状态。但是在此期间,北京市出现了两次(农历正月初二至初六、正月十六至十九)污染水平不逊于往年的重污染天气,成为社会各界关注的焦点。本文以北京市2016-2020年春节期间的空气质量为研究对象,首先运用多元线性回归法判断了气象因素以及经济和社会活动因素对四类污染物(PM2.5、PM10、NO_2和SO2)的影响程度,进一步研究了在2020年春节期间的两次重污染时段内各个因素对PM2.5的影响程度,最后运用双重差分法评估春节期间的疫情管控措施对北京市空气质量产生的影响。多元线性回归结果显示在2016-2020年春节期间:(1)气象因素对北京市的PM2.5、PM10、NO2和SO2四类污染物浓度的影响占主导地位,其中温度、湿度与四类污染物浓度变化均显著正相关,气压和降水与四类污染物浓度变化均显著负相关;(2)经济活动水平与NO2浓度水平有显著正相关关系,说明随着经济活动水平强度的降低和交通流量的下降,NO2浓度呈现出降低趋势,而PM2.5、PM10和SO2与经济活动水平分别有正相关、正相关和负相关关系,但并不显著;(3)从社会活动来看,燃放烟花爆竹会增大PM2.5、PM10和SO2浓度,同时假期变量对PM2.5和SO2的浓度变化也存在显著正向影响。对于2020年春节期间的两次重污染过程来说,气象依然是主要影响因素,但是各因素的贡献值有所不同;春节期间经济活动水平对正月初二至初六重污染过程的贡献较小(2%),而对正月十六至十九有明显的负影响(-20%)。双重差分法评估结果显示,疫情管控对PM10和NO2有缓解效果,而对PM2.5和SO2未见明显影响,这表示疫情管控措施对空气质量施加了影响。本文不仅识别出了春节期间气象因素、经济社会活动与北京市四类污染物浓度之间的关系,有助于厘清各因素对空气质量产生影响的方式,而且对进一步改善北京市及京津冀地区的空气质量具有重要启示意义。  相似文献   

13.
Particulate pollution was a critical challenge to the promise of good air quality during the 2008 Beijing Olympic Games, which took place from August 8th to 24th. To ensure good air quality for the Games, several temporary emission control measures were implemented in Beijing and surrounding areas. Ambient particulate matter concentration decreased significantly during the Olympic period; however, it is difficult to distinguish the effectiveness of those control measures since meteorology also affects ambient PM2.5 concentration. In this work, a multiple linear regression model based on continuous field monitoring at a roadside site was conducted to evaluate the effects of meteorology and emission control measures on the reduction of PM2.5 during the 2008 Olympic Games. The hourly data set was divided into two time periods, the no control period, June 22nd to July 4th, and the control period, July 28th to August 21st. The response variable was PM2.5 and the meteorology covariates used in the model were hourly temperature, dew point temperature, wind speed and precipitation. Wind direction was not a significant predictor of PM2.5 levels in either the control or the no control period. Using the meteorologically-based regression coefficients from the two time periods, meteorology was found to contribute to at least a 16% reduction in PM2.5 levels in the roadside microenvironment; while the pollution control measures contributed to at least a 43% reduction in PM2.5 levels.  相似文献   

14.
为了评估抗战纪念活动期间污染物减排措施对北京市空气质量的影响,利用2015年8月1日~2015年9月18日北京市大气污染物浓度数据,以及2014年同期监测数据进行对比分析.结果表明:减排期间(2015年8月20日~2015年9月3日)北京市PM2.5,SO2,NO2和CO浓度均值为17.05mg/m3,2.35mg/m3,21.04mg/m3和0.56mg/m3,对比减排前期,各污染物分别下降了71.26%,36.49%,37.92%和37.78%,减排后期,随着减排措施的取消,大气污染物反弹上升.与2014年同期相比,减排期间污染物浓度分别下降了73.59%,56.64%,52.39%和38.46%,大气质量改善效果显著.3个时段(减排期间,活动当天和2014年同期)污染物浓度日变化特征相似,整体上呈现2014年同期>减排期间>活动当天的特征.空间分布上,各站点污染物浓度均远低于2014年同期水平,其中PM2.5降幅大且空间差异较小,SO2在空间上差异最为明显,不同站点的PM2.5降幅在68.91%~77.63%之间,SO2降幅在7.43%~74.75%之间,NO2降幅在34.60%~72.28%之间,CO降幅在24.98%~63.73%之间.减排期间北京市PM2.5,SO2,NO2和CO浓度分别比周边城市均值低24.66%,81.00%,27.30%和36.36%,也从另一方面反映出减排措施的明显效果.  相似文献   

15.
多模式模拟评估奥运赛事期间可吸入颗粒物减排效果   总被引:12,自引:5,他引:7  
以空气质量多模式系统为工具,分析奥运赛事期间可吸入颗粒物(PM10)浓度大幅减小特征,从气象场和排放源两方面研究PM10浓度大幅减小的主要原因.多模式系统由嵌套网格空气质量模式(NAQPMS)、通用空气质量多尺度模式(CMAQ)和复杂大气空气质量三维模式(CAMx)3个空气质量复合模型组成,并以中尺度气象模式(MM5)和稀疏矩阵排放处理模型(SMOKE)提供统一气象场及排放源.研究对比2006年8月、2008年8月两组气象条件下北京PM10浓度水平及模拟效果,结果表明奥运赛事期间PM10浓度大幅减小的主要原因不是气象因素,而是由于额外措施引起的PM10排放减少.同时采用多模式系统数值模拟反向评估,获得北京奥运赛事期间奥运控制及额外减排措施引起的PM10减排量,结果表明,奥运赛事期间所有额外控制措施对颗粒物浓度效果相当于在2008年8月气象条件下,削减大约200t.d-1的无组织PM10排放,相当于北京正常时期PM10排放的50%.  相似文献   

16.
2016年12月16~21日,京津冀地区经历了一次大范围重污染过程.本文基于空气质量监测资料及实况天气图分析了此次极端区域重污染事件的天气成因,并利用嵌套网格空气质量预报模式(NAQPMS)对京津冀主要城市PM2.5污染来源进行定量解析.结果表明:污染前中期500hPa高空为偏西气流伴空中回暖,后期转槽前偏南气流增温增湿明显;对应地面气压逐渐降低,辐合不断增强;垂直方向上,逆温层不断抬升加厚,中低层暖平流明显,风垂直切变小;大气长时间处于极度静稳状态也是造成此次重污染过程的天气因素.污染期间,京津冀各主要城市PM2.5污染本地贡献占40%~60%;北京市PM2.5本地贡献为48%,其中16~17日北京市主要受沿太行山东侧的西南向输送通道(邯郸-邢台-石家庄-保定-北京)影响,其后风速减小,北京本地及周边城市贡献增大.  相似文献   

17.
通过分析深圳市龙华区2018年大气环境承载力发现,NO2和PM10的实际大气环境承载量已经降到了理想大气环境容量范围内,而PM2.5的实际大气环境承载量则已超过理想大气环境容量近1000 t,说明PM2.5仍是龙华区大气污染防治的重点工作,利用科学手段精准、有效地指导PM2.5减排工作十分重要。基于相关监测数据,结合WRF-Chem大气化学模式,对深圳市龙华区2017年、2019年冷季大气中PM2.5污染日案例和2018年暖季大气中PM2.5相对清洁日案例的PM2.5污染与减排过程进行了模拟分析。结果表明:为达到PM2.5浓度的控制目标,龙华区需在相对清洁时期的排放量上减排30%,污染时期的排放量上减排70%~75%,且减排工作在PM2.5浓度高峰时期开展能取得较好的减排效果;龙华区大气污染受周边区域传输污染的影响较大,减排任务较为严峻,需要其他地区协同参与,共同减排。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号