首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen  Ming  Kato  Koji  Adachi  Koshi 《Tribology Letters》2001,11(1):23-28
Running-in periods and friction coefficients of SiC and Si3N4 sliding against themselves under water lubrication were investigated with a pin-on-disk apparatus at sliding speed of 120 mm/s and a normal load of 5 N under ambient conditions. It was found that the running-in period of self-mated Si3N4 is much shorter than that of self-mated SiC, and also that the steady-state friction coefficient of self-mated Si3N4 was lower (0.0035) than that of self-mated SiC (0.01). The difference in mechanism was analyzed from the point of view of electronic structure and surface chemistry.  相似文献   

2.
Ming Chen  Koji Kato  Koshi Adachi 《Wear》2001,250(1-12):246-255
The friction and wear of self-mated SiC and Si3N4 with different initial roughness sliding in water were investigated with pin-on-disk apparatus at normal load of 5 N and sliding speed of 120 mm/s in ambient condition. It was found that, for self-mated Si3N4, the wear mechanism for surface smoothening to obtain low friction was tribochemical wear, but for self-mated SiC, it changed from mechanical wear into tribochemical wear with increasing sliding cycles. After running-in in water, self-mated Si3N4 exhibited lower steady-state friction coefficient than self-mated SiC did. For these two ceramics, initial and steady-state friction coefficients were hardly dependent on initial roughness. Initial roughness mainly affected the running-in period. The larger the initial roughness, the longer the running-in period, but the running-in period was much shorter for self-mated Si3N4 at each initial roughness than that for self-mated SiC.  相似文献   

3.
Ionic Liquid Lubrication Effects on Ceramics in a Water Environment   总被引:1,自引:0,他引:1  
Phillips  B.S.  Zabinski  J.S. 《Tribology Letters》2004,17(3):533-541
Ionic liquids were studied to determine their effectiveness as boundary lubricant additives for water. The chemical and tribochemical reactions that govern their behavior were probed to understand lubrication mechanisms. Under water lubricated conditions, silicon nitride ceramics are characterized by a running-in period of high friction, during which time the surface is modified causing a dramatic decrease in friction and wear. Two mechanisms have been proposed to explain the friction and wear behavior. Si3N4 sliding against itself may result in tribochemical reactions that form a hydrated silicon oxide layer on the surface of the sliding contact. This film has been suggested to mediate friction and wear. Others have suggested that tribo-dissolution of SiO2 results in an ultra smooth surface and after a running-in period of high wear, the lubrication mode becomes hydrodynamic. The goal of this study was to examine the effects that ionic liquids have on the friction and wear properties of Si3N4, in particular their effects on the running-in period. Tribological properties were evaluated using pin-on-disk and reciprocating tribometers. The tribological conditions of the tests were selected to produce mixed/hydrodynamic lubrication. The relative lubrication mode between mixed and hydrodynamic was controlled by the initial surface roughness. Solutions containing 2 wt% ionic liquids were produced for testing purposes. Chemical analysis of the sliding surfaces was accomplished with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The test specimens were 1 in diameter Si3N4 disks sliding against 1/4 in Si3N4 balls. The addition of ionic liquids to water resulted in dramatically reduced running-in periods for silicon nitride from thousands to the hundreds of cycles. Proposed mechanisms include the formation of BFx and PFx films on the surface and creation of an electric double layer of ionic liquid.  相似文献   

4.
We have examined the adsorption properties of poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG)—a brush-like polymer—on Si3N4 and SiC surfaces and determined its impact on the aqueous lubrication of Si3N4 and SiC at various speeds and applied loads. The addition of PLL-g-PEG in aqueous solution reduces the interfacial friction forces significantly for self-mated sliding contacts of these two ceramics, as compared to lubrication with water or buffer solution alone. For SiC, the improved lubricating performance by addition of PLL-g-PEG was apparent for all tested speeds (from 1.4 to 185 mm/s under 2 N load). For Si3N4, the effect was more apparent in the slow-speed regime (≤20 mm/s under 2 N load) than in the high-speed regime (>100 mm/s), where extremely low coefficients of friction (μ ≤ 0.006) are readily achieved by aqueous buffer solution alone. It was further observed that the optimal lubricating effect with Si3N4 is achieved when the tribopairs are first run-in in polymer-free aqueous buffer to render the sliding surfaces smooth, after which the PLL-g-PEG copolymer is added to the buffer solution.  相似文献   

5.
To improve water lubrication of ceramics at a lower sliding velocity, the effect of the addition of silane coupling agents was investigated. Si3N4 and Al2O3 were slid against themselves in water with and without the addition of silane coupling agents in amounts ranging from 0.05 to 0.10 mol/l. Silane coupling agents containing one or more amino groups were effective in reducing the friction of Si3N4 and Al2O3 in water. Si3N4 also showed significant wear reduction but not Al2O3. However, the addition of a silane coupling agent containing an epoxy group increased both friction and wear of Si3N4. Improved lubricative characteristics of Si3N4 in water and in silane coupling agent solutions were obtained when Si3N4 contained smaller amounts of sintering additives. The adsorption behaviour of a silane coupling agent on ceramics was examined using both Fourier transform infrared spectroscopy and thin layer chromatography to clarify the interaction between the silane coupling agent and the ceramics. The role of polysiloxane film formation on ceramics is discussed to demonstrate the lubrication properties of ceramics.  相似文献   

6.
Dry friction and wear tests were performed with self-mated couples of SiC containing 50% TiC, Si3N4---BN, SiC---TiB2 and Si3N4 with 32% TiN at room temperature and 400°C or 800°C.Under room temperature conditions, the friction coefficient of the couple SiC---TiC/SiC---TiC is only half of that of the couple SiC/SiC and the wear is one order of magnitude smaller. At 400°C, it exceeds the friction coefficient of SiC/SiC except at the highest sliding velocity of 3 m s−1. At lower sliding velocities the wear coefficient of SiC---TiC/SiC---TiC is lower than that of SiC/SiC.The couple Si3N4---TiN/Si3N4---TiN exhibits high friction coefficients under all test conditions. At room temperature the wear volume of the self-mated couples of Si3N4 and Si3N4---TiN after a sliding distance of 1000 m is similar, but Si3N4---TiN shows a running-in behaviour. At 800°C the wear coefficient of Si3N4---TiN/Si3N4---TiN is approximately two orders of magnitude smaller than that of Si3N4/Si3N4, and equal to those at room temperature. At 22°C the addition of BN reduces the friction of Si3N4. The wear coefficient is independent of sliding velocity and the self-mated couples showing running-in. Friction and wear increase with increasing temperature. The wear coefficient of SiC---TiB2 above 0.5 m s−1 at 400°C is advantageously near 10−6 mm3 (Nm)−1. With the other test conditions the wear behaviour is similar to SSiC.  相似文献   

7.
Tests on self-mated Si3N4- and SiC-based ceramics as well as ceramic-ceramic composites were performed in an Amsler-type wear tester under dry and water-lubricated rolling conditions with 10% slip. Under dry friction, wear coefficients of the materials varied by four decades. Unlubricated wear coefficients below 10−7 mm3/(N.m), defined as a practical limit for applicability, can be achieved with Si3N4-TiN below 775 MPa and with HIP-SiC below 750 MPa. HIPped Si3N4 and hot-pressed SiC-TiC under dry friction exhibit a small dependency of wear coefficient on Hertzian pressure, with wear coefficients below 10−6 mm3/(N.m). The lowest wear coefficient below 10−6 mm3/(N.m) with water lubrication was found for Si3N4-TiN and S-RBSi3N4; water reduces the variability in wear coefficient for Si3N4- and SiC-based ceramics.  相似文献   

8.
Amorphous carbon nitride coatings (a-CNx) were deposited on SiC disk by ion beam assisted deposition (IBAD). The tribological behavior of a-CNx coating sliding against SiC ball in water was investigated and compared with that of SiC/SiC system at room temperature. The influences of testing conditions on friction coefficient and specific wear rate of both kinds of tribopairs were studied. The worn surfaces on disks were observed by scanning electron microscope (SEM). The results indicate that the running-in period of a-CNx/SiC was shorter than that of SiC/SiC system in water. At a sliding velocity of 120 mm/s, the mean steady-state friction coefficients of SiC/SiC (0.096) was higher than that of a-CNx/SiC (0.05), while at 160 mm/s, lower friction coefficient (0.01) was obtained for SiC/SiC in water. With an increment of normal load, the mean steady-state friction coefficients after running-in first decreased, reaching a minimum value, and then increased. For self-mated SiC, the specific wear rate of SiC ball was a little higher than that of SiC disk, while for a-CNx/SiC, the specific wear rate of SiC ball were 10 times smaller than that of a-CNx coating. Furthermore, the specific wear rate of SiC ball sliding against a-CNx coating was reduced by a factor up to 100~1000 in comparison to that against SiC in water. The wear mechanism of SiC/SiC system in water is related to micro-fracture of ceramic and instability of tribochemical reaction layer. Conversely, wear mechanism for a-CNx/SiC is related to formation and transfer of easy-shear friction layer.  相似文献   

9.
Friction experiments were conducted on four kinds of ceramics (SiC, Si3N4, Al2O3 and ZrO2) against themselves in water under different contact pressures and sliding velocities. The variations of friction coefficients as a function of sliding distance, and the effects of mean contact pressure and sliding velocity on friction coefficients were shown. Friction coefficients lower than 0.03 were observed under a certain combination of mean contact pressure and sliding velocity for each material. The friction coefficient suddenly increased when the mean contact pressure was above a threshold value, which depended on both sliding velocity and the material of sliding pairs. SiC had a higher threshold value than the other three ceramics at every sliding velocity investigated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The tribological properties of Ni3Al-Cr7C3 composite coating under water lubrication were examined by using a ball-on-disc reciprocating tribotester. The effects of load and sliding speed on wear rate of the coating were investigated. The worn surface of the coating was analyzed using electron probe microscopy analysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The results show the friction coefficient of the coating is decreased under water lubrication. The wear rate of the coating linearly increases with the load. At high sliding speed, the wear rate of the coating is dramatically increased and a large amount of the counterpart material is transferred to the coating worn surface. The low friction of the coating under water lubrication is due to the oxidizing of the worn surface in the wear. The wear mechanism of the coating is plastic deformation at low normal load and sliding speed. However, the wear mechanism transforms to microfracture and microploughing at high load with low sliding speed, and oxidation wear at high sliding speed. It is concluded that the contribution of the sliding speed to an increase in the coating wear is larger than that of the normal load.  相似文献   

11.
O.O. Adewoye  T.F. Page 《Wear》1981,70(1):37-51
Electron optical microscopy was employed to study the friction and wear of commercial polycrystalline varieties of SiC and Si3N4 in air at ambient temperature. Friction and wear tests were conducted in a reciprocating configuration with conical riders (both diamond and ceramic) sliding on a flat ceramic substrate. Worn surfaces were examined by both scanning electron microscopy and transmission electron microscopy. In general, friction and wear in the diamond-ceramic couples were severe. Friction with ceramic-ceramic couples was low, with friction coefficients between 0.1 and 0.4, wear being absent in single-pass tests.With ceramic-ceramic couple multipass systems, wear of Si3N4 occurs by plastic deformation which increases in severity with sliding distance accompanied by a corresponding increase in friction coefficient. With SiC, wear occurs by a mixture of intergranular fracture due to grain boundary weakness and plastic deformation.  相似文献   

12.
高载荷条件下石墨-石墨摩擦副的摩擦学特性研究   总被引:1,自引:0,他引:1  
利用研制的高载荷条件下摩擦因数测试装置,研究了石墨/石墨摩擦副在空气、水和油介质中的摩擦学特性。结果表明在4~15MPa范围内,随着载荷的增加,摩擦副在空气、水和油介质中的摩擦因数都逐渐降低;在油介质中摩擦副的摩擦因数最小,在水介质中摩擦因数变化最平稳,在空气中摩擦因数最大,且随载荷的增加变化幅度最大。磨损表面原始形貌对比分析表明,在空气中,摩擦副表面处于边界润滑状态,主要磨损机制是粘着磨损和犁削;水润滑条件下为轻微犁削;油润滑条件下,摩擦副表面处于为边界润滑和流体润滑状态,油中的减摩剂对试样表面有抛光作用。  相似文献   

13.
The influence of the pH in water lubricated sliding contacts was evaluated in terms of friction and wear. The experiments were carried out using a ball-on-disc setup. Si3N4 balls and Al2O3 discs were tested at temperature of (22±2) °C, sliding speed of (1.00±0.03) m/s and normal load of (54.25±0.17) N. Eight types of water with pHs varying from 3 to 12 were used as lubricant. The running-in period, friction coefficient and wear-volume were shown to be nearly independent of the initial pH values within the DLVO range (4≤pH≤10), since at these range the water׳s pH tends to the same value (7.6±0.3) during the test. Superlubricity could be reached with negligible wear by properly setting the electrochemical properties and operating conditions of the tribosystem.  相似文献   

14.
Jahanmir  S.  Ozmen  Y.  Ives  L.K. 《Tribology Letters》2004,17(3):409-417
Several studies have shown that the coefficient of friction of self-mated silicon nitride in water decreases from an initially high value to about 0.002 after a certain run-in period. Since the worn surfaces become extremely smooth, the low friction is attributed to the initiation of hydrodynamic lubrication by a thin water film at the interface. The possibility of mixed lubrication, i.e., hydrodynamic lubrication by water and boundary lubrication due to the presence of colloidal silica on the wearing surfaces, has also been proposed. The purpose of our study is to investigate the influence of load, speed, and surface roughness on the duration of the run-in period. The results confirmed that a low coefficient of friction is obtained following a run-in period when a wear scar of sufficient size is developed to reduce the contact stress. The run-in period, during which the coefficient of friction is fairly high, was shorter for smoother surfaces and at higher loads and speeds. The low friction behavior was found to be unstable and occasional high friction spikes were observed. The surfaces of the wear tracks and wear scars contained a series of striations parallel to the sliding direction and exhibiting plastic deformation, delamination and fracture. The striations that appeared to be associated with the high friction spikes, could form as a result surface film breakdown. Although these results are consistent with the proposed mechanisms of hydrodynamic lubrication or mixed lubrication, it is proposed that the low friction behavior may be also related to fundamental interactions between two hard and elastically deforming surfaces covered with hydrogen-terminated oxide films.  相似文献   

15.
Tribological behaviors of Si3N4 ceramic sliding against 316 stainless steel under seawater lubrication were investigated and compared with those under dry sliding and pure water lubrication. The results showed that SiO2 colloidal particles were formed on the rubbing surface of Si3N4 due to the friction-induced chemical reaction of Si3N4 with H2O, which were further aggregated into the silica gel with the assistance of ions in seawater. Because of the boundary lubrication of the silica gel layer, both the lowest friction coefficient and the smallest wear rates of Si3N4 and 316 steel were obtained in seawater.  相似文献   

16.
Silicon carbide (SiC) with water lubrication is being considered as the most promising combination to replace metals and oil for sliding bearings and mechanical seals of machines working in water. The basic properties of the Stribeck curves of water lubricated SiC in parallel contact, especially, the critical conditions for the transition from HL to ML were studied experimentally. The hydrodynamic lubrication regions and minimum friction coefficients of metal pair in oil and SiC pair in water are compared to give a quantitative value of the oil viscosity range, in which metal/oil can be directly replaced by SiC/water for triboelements.In order to improve the load-carrying capacity of SiC sliding bearings for the increasing strict demands from industry, a surface texture was introduced to one of the contact surfaces by means of reactive-ion etching. The effect of surface texture on the lubrication regimes and the minimum friction coefficient were evaluated experimentally.  相似文献   

17.
The tribological properties of Ni–17.5Si–29.3Cr alloy against Si3N4 under water lubrication conditions were studied on a ball-on-disc reciprocating 1tribotester. The effects of load and sliding speed on tribological properties of the alloy were investigated. The worn surfaces of the alloy were examined with SEM, TEM and an X-ray photoelectron spectroscope (XPS). It was found that the tribological properties of the alloy were closely dependent on the sliding conditions. Wear rate with the load of the alloy increased slightly at low and moderate load and increased dramatically at high load. Wear rate with the sliding speed of the alloy increased slightly at low and moderate sliding speed and increased dramatically at high sliding speed, which showed the same trend as that with the load. The friction coefficient increased with the load (especially at high load), and decreased with sliding speed at low sliding speed and increased significantly at high sliding speed. Wear mechanism of the alloy was mainly microploughing and delamination at low and moderate load and transformed to microfracture and delamination at high load.  相似文献   

18.
The influence of only water addition on the hot metal forming process has not yet been reported in regard to tribological performance. In the present study, simulation tests were carried out on a pin-on-disc tribometer to evaluate the effects of water lubrication on the wear and friction behaviors of interstitial free (IF) steel sliding against different countersurface materials at 800°C in comparison with those in dry sliding. The opposing materials were selected as GCr15 steel and ceramic-based compounds including ZrO2, SiC, and Si3N4. It has been found that Si-based component–IF steel pairs exhibit the lowest wear losses despite achieving relatively high friction. Water addition adversely impairs the friction and wear characteristics on steel-steel tribopairs, whereas it shows insignificant effects on the pair involving ceramic-based components except ZrO2. Varying tribological responses can be found among different mated surfaces under water lubrication. X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy were utilized to examine the worn surface. The acting mechanism of water addition for different rubbing pairs was further discussed from the aspects of oxide tribochemistry.  相似文献   

19.
When studying the tribological behaviors of a Cu-based friction pair in different lubrication regimes, calculation of the real contact area of asperity contacts is crucial but difficult. In this work, a mixed lubrication model in plane contacts is developed, and pin-on-disc tests are carried out. The real contact area ratio, load sharing ratio, and friction coefficient are investigated. Effects of sliding velocity, temperature, and pressure are considered. The results show that when the maximum contact area ratio is about 14.6%, the load sharing ratio of asperity contacts is about 95%. The friction coefficient obviously increases from less than 0.04 to about 0.15 as the regime changes from hydrodynamic to boundary lubrication. Asperities have a significant influence on the local lubrication of a Cu-based friction pair, and the action of hydrodynamic pressure cannot be ignored.  相似文献   

20.
Fei Zhou  Yuan Wang  Feng Liu  Yuedong Meng  Zhendong Dai 《Wear》2009,267(9-10):1581-1588
It is evident that the micro-arc oxidation (MAO) ceramic coatings often exhibit relatively high friction coefficients as sliding against many mating materials. To reduce the friction coefficient for the MAO coatings, the duplex MAO/CrN coatings were deposited on 2024Al alloy using combined micro-arc oxidation and reactive radio frequency magnetron sputtering. The microstructure and phase of the duplex coatings were observed and determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The friction and wear behaviors of the duplex coatings sliding against Si3N4 balls in air, water and oil were investigated using a ball-on-disk tribometer. The wear rate of the duplex coating was determined by non-contact optical profilometer and the wear tracks on the duplex coatings were observed by SEM. The results showed the CrN coatings mainly consisted of Cr, CrN and Cr2N phases. The duplex coatings/Si3N4 tribopair exhibited the highest friction coefficient in air, while displayed the lowest friction coefficient in oil. When the normal load and the sliding speed increased, the friction coefficient in air increased from 0.65 to 0.72, whereas decreased from 0.58 to 0.36 in water and 0.20 to 0.08 in oil. The specific wear rates for the duplex coatings in air were higher than those in oil. In comparison to the MAO coatings, the duplex MAO/CrN coatings displayed excellent tribological properties under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号