首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
    
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   

2.
    
ContextCritical systems in domains such as aviation, railway, and automotive are often subject to a formal process of safety certification. The goal of this process is to ensure that these systems will operate safely without posing undue risks to the user, the public, or the environment. Safety is typically ensured via complying with safety standards. Demonstrating compliance to these standards involves providing evidence to show that the safety criteria of the standards are met.ObjectiveIn order to cope with the complexity of large critical systems and subsequently the plethora of evidence information required for achieving compliance, safety professionals need in-depth knowledge to assist them in classifying different types of evidence, and in structuring and assessing the evidence. This paper is a step towards developing such a body of knowledge that is derived from a large-scale empirically rigorous literature review.MethodWe use a Systematic Literature Review (SLR) as the basis for our work. The SLR builds on 218 peer-reviewed studies, selected through a multi-stage process, from 4963 studies published between 1990 and 2012.ResultsWe develop a taxonomy that classifies the information and artefacts considered as evidence for safety. We review the existing techniques for safety evidence structuring and assessment, and further study the relevant challenges that have been the target of investigation in the academic literature. We analyse commonalities in the results among different application domains and discuss implications of the results for both research and practice.ConclusionThe paper is, to our knowledge, the largest existing study on the topic of safety evidence. The results are particularly relevant to practitioners seeking a better grasp on evidence requirements as well as to researchers in the area of system safety. As a major finding of the review, the results strongly suggest the need for more practitioner-oriented and industry-driven empirical studies in the area of safety certification.  相似文献   

3.
    
The medical device conceptual design decision-making is a process of coordinating pertinent stakeholders, which will significantly affect the quality of follow-up market competitiveness. However, as the most challenging parts of user-centered design, traditional methods are mainly focusing on determining the priorities of the evaluation criteria and forming the comprehensive value (utility) of the conceptual scheme, may not fully deal with the interaction and interdependent between the conflicts of interest among stakeholders and weigh the ambiguous influence on the overall design expectations, which results in the unstable decision-making results. To overcome this drawback, this paper proposes a cooperative game theory based decision model for device conceptual scheme under uncertainty. The proposed approach consists of three parts: first part is to collect and classify needs of end users and professional users based on predefined evaluation criteria; second part is using rough set theory technique to create criteria correlation diagram and scheme value matrix from users; and third part is developing the fuzzy coalition utility model to maximize the overall desirability through the criteria correlation diagram with the conflict of interests of end and professional users considered, and then selecting the optimal scheme. A case study of blood pressure meter is used to illustrate the proposed approach and the result shows that this approach is more robust compared with the widely used the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach.  相似文献   

4.
5.
    
Metro shield construction will inevitably cause changes in the stress and strain state of the surrounding soil, resulting in stratum deformation and surface settlement (SS), which will seriously endanger the safety of nearby buildings, roads and underground pipe networks. Therefore, in the design and construction stage, optimizing the shield construction parameters (SCP) is the key to reducing the SS rate and increasing the safe driving speed (DS). However, optimization of existing SCP are challenged by the need to construct a unified multiobjective model for optimization that are efficient, convenient, and widely applicable. This paper innovatively proposes a hybrid intelligence framework that combines random forest (RF) and non-dominant classification genetic algorithm II (NSGA-II), which overcomes the shortcomings of time-consuming and high cost for the establishment and verification of traditional prediction models. First, RF is used to rank the importance of 10 influencing factors, and the nonlinear mapping relationship between the main SCP and the two objectives is constructed as the fitness function of the NSGA-II algorithm. Second, a multiobjective optimization framework for RF-NSGA-II is established, based on which the optimal Pareto front is calculated, and reasonable optimized control ranges for the SCP are obtained. Finally, a case study in the Wuhan Rail Transit Line 6 project is examined. The results show that the SS is reduced by 12.5% and the DS is increased by 2.5% with the proposed framework. Meanwhile, the prediction results are compared with the back-propagation neural network (BPNN), support vector machine (SVM), and gradient boosting decision tree (GBDT). The findings indicate that the RF-NSGA-II framework can not only meet the requirements of SS and DS calculation, but also used as a support tool for real-time optimization and control of SCP.  相似文献   

6.
    
Quality control is a critical aspect of the modern electronic circuit industry. In addition to being a pre-requisite to proper functioning, circuit quality is closely related to safety, security, and economic issues. Quality control has been reached through system testing. Meanwhile, device miniaturization and multilayer Printed Circuit Boards have increased the electronic circuit test complexity considerably. Hence, traditional test processes based on manual inspections have become outdated and inefficient. More recently, the concept of Advanced Manufacturing or Industry 4.0 has enabled the manufacturing of customized products, tailored to the changing customers’ demands. This scenario points out additional requirements for electronic system testing: it demands a high degree of flexibility in production processes, short design and manufacturing cycles, and cost control. Thus, there is a demand for circuit testing systems that present effectiveness and accessibility without placing numerous test points. This work is focused on automated test solutions based on machine learning, which are becoming popular with advances in computational tools. We present a new testing approach that uses autoencoders to detect firmware or hardware anomalies based on the electric current signature. We built a test set-up using an embedded system development board to evaluate the proposed approach. We implemented six firmware versions that can run independently on the test board – one of them is considered anomaly-free. In order to obtain a reference frame to our results, two other classification techniques (a computer vision algorithm and a random forest classification model) were employed to detect anomalies on the same development board. The outcomes of the experiments demonstrated that the proposed test method is highly effective. For several test scenarios, the correct detection rate was above 99%. Test results showed that autoencoder and random forest approaches are effective. However, random forests require all data classes to be trained. Training an autoencoder, on the other hand, only requires the reference (anomaly-free) class.  相似文献   

7.
    
We apply activity theory (AT) to design adaptive e-learning systems (AeLS). AT is a framework to study human’s behavior at learning; whereas, AeLS enhance students’ apprenticeship by the personalization of teaching–learning experiences. AeLS depict users’ traits and predicts learning outcomes. The approach was successfully tested: Experimental group took lectures chosen by the anticipation AT principle; whilst, control group received randomly selected lectures. Learning achieved by experimental group reveals a correlation quite significant and high positive; but, for control group the correlation it is not significant and medium positive. We conclude: AT is a useful framework to design AeLS and provide student-centered education.  相似文献   

8.
    
The application of machine learning (ML) techniques to metal-based nanomaterials has contributed greatly to understanding the interaction of nanoparticles, properties prediction, and new materials discovery. However, the prediction accuracy and efficiency of distinctive ML algorithms differ with different metal-based nanomaterials problems. This, alongside the high dimensionality and nonlinearity of available datasets in metal-based nanomaterials problems, makes it imperative to review recent advances in the implementation of ML techniques for these kinds of problems. In addition to understanding the applicability of different ML algorithms to various kinds of metal-based nanomaterials problems, it is hoped that this work will help facilitate understanding and promote interest in this emerging and less explored area of materials informatics. The scope of this review covers the introduction of metal-based nanomaterials, several techniques used in generating datasets for training ML models, feature engineering techniques used in nanomaterials-machine learning applications, and commonly applied ML algorithms. Then, we present the recent advances in ML applications to metal-based nanomaterials, with emphasis on the procedure and efficiency of algorithms used for such applications. In the concluding section, we identify the most common and efficient algorithms for distinctive property predictions. The common problems encountered in ML applications for metal-based nanoinformatics were mentioned. Finally, we propose suitable solutions and future outlooks for various challenges in metal-based nanoinformatics research.  相似文献   

9.
This paper proposes using Deep Neural Networks (DNN) models for recognizing construction workers’ postures from motion data captured by wearable Inertial Measurement Units (IMUs) sensors. The recognized awkward postures can be linked to known risks of Musculoskeletal Disorders among workers. Applying conventional Machine Learning (ML)-based models has shown promising results in recognizing workers’ postures. ML models are limited – they reply on heuristic feature engineering when constructing discriminative features for characterizing postures. This makes further improving the model performance regarding recognition accuracy challenging. In this paper, the authors investigate the feasibility of addressing this problem using a DNN model that, through integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) layers, automates feature engineering and sequential pattern detection. The model’s recognition performance was evaluated using datasets collected from four workers on construction sites. The DNN model integrating one convolutional and two LSTM layers resulted in the best performance (measured by F1 Score). The proposed model outperformed baseline CNN and LSTM models suggesting that it leveraged the advantages of the two baseline models for effective feature learning. It improved benchmark ML models’ recognition performance by an average of 11% under personalized modelling. The recognition performance was also improved by 3% when the proposed model was applied to 8 types of postures across three subjects. These results support that the proposed DNN model has a high potential in addressing challenges for improving the recognition performance that was observed when using ML models.  相似文献   

10.
    
The maturity of Industrial 4.0 technologies (smart wearable sensors, Internet of things [IoT], cloud computing, etc.) has facilitated the iteration and digitization of rehabilitation assistive devices (RADs) and the innovative development of intelligent manufacturing systems of RADs, expanding the value-added component of smart healthcare services. The intelligent manufacturing service mode, based on the concept of the product life cycle, completes the multi-source data production process analysis and the optimization of manufacturing, operation, and maintenance through intelligent industrial Internet of things and other means and improves the product life cycle management and operation mechanism. The smart product-service system (PSS) realizes the value-added of products by providing users with personalized products and value-added services, service efficiency, and sustainable development and gradually forms an Internet-product-service ecosystem. However, research on the PSS of RADs for special populations is relatively limited. Thus, this paper provides an overview of an IoT-based production model for RADs and a smart PSS-based development method of multimodal healthcare value-added services for special people. Taking the hand rehabilitation training devices for autistic children as a case, this paper verifies the effectiveness and availability of the proposed method. Compared with the traditional framework, the method used in this paper primarily helps evaluate rehabilitation efficacy, personalizes schemes for patients, provides auxiliary intelligent manufacturing service data and digital rehabilitation data for RAD manufacturers, and optimizes the product iteration development procedures by combining user-centered product interaction, multimodal evaluation, and value-added design. This study incorporates the iterative design of RADs into the process of smart PSS to provide some guidance to the RADs design manufacturers.  相似文献   

11.
    
In this study, two types of convolutional neural network (CNN) classifiers are designed to handle the problem of classifying black plastic wastes. In particular, the black plastic wastes have the property of absorbing laser light coming from spectrometer. Therefore, the classification of black plastic wastes remains still a challenging problem compared to classifying other colored plastic wastes using existing spectroscopy (i.e., NIR). When it comes the classification problem of black plastic wastes, effective classification techniques by the laser spectroscopy of Fourier Transform-Infrared Radiation (FT-IR) with Attenuated Total Reflectance (ATR) and Raman to analyze the classification problem of black plastic wastes are introduced. Due to the strong ability of extracting spatial features and remarkable performance in image classification, 1D and 2D CNN through data features are designed as classifiers. The technique of chemical peak points selection is considered to reduce data redundancy. Furthermore, through the selection of data features based on the extracted 1D data with peak points is introduced. Experimental results demonstrate that 2DCNN classifier designed with the help of 2D data feature selection as well as 1DCNN classifier shows the best performance compared with other reported methods for classifying black plastic wastes.  相似文献   

12.
    
Target design methodologies (DfX) were developed to cope with specific engineering design issues such as cost-effectiveness, manufacturability, assemblability, maintainability, among others. However, DfX methodologies are undergoing the lack of real integration with 3D CAD systems. Their principles are currently applied downstream of the 3D modelling by following the well-known rules available from the literature and engineers’ know-how (tacit internal knowledge).This paper provides a method to formalize complex DfX engineering knowledge into explicit knowledge that can be reused for Advanced Engineering Informatics to aid designers and engineers in developing mechanical products. This research work wants to define a general method (ontology) able to couple DfX design guidelines (engineering knowledge) with geometrical product features of a product 3D model (engineering parametric data). A common layer for all DfX methods (horizontal) and dedicated layers for each DfX method (vertical) allow creating the suitable ontology for the systematic collection of the DfX rules considering each target. Moreover, the proposed framework is the first step for developing (future work) a software tool to assist engineers and designers during product development (3D CAD modelling).A design for assembly (DfA) case study shows how to collect assembly rules in the given framework. It demonstrates the applicability of the CAD-integrated DfX system in the mechanical design of a jig-crane. Several benefits are recognized: (i) systematic collection of DfA rules for informatics development, (ii) identification of assembly issues in the product development process, and (iii) reduction of effort and time during the design review.  相似文献   

13.
    
The China-Pakistan Economic Corridor (CPEC) is considered as an excellent breakthrough for improving the economic and security situation in the region. The estimated worth of CPEC is 62$ billion which is comprising of 49 developmental projects. China-Pakistan Fiber Optic Project (CPFOP) is one of the core projects among these, which will deliver safe route of voice traffic between both countries. CPFOP is greatly beneficial in terms of enhanced security and revenue generation. Currently, Pakistan’s international connectivity is via submarine cables. CPFOP will provide an alternative route for international telecom traffic and also assist in achieving the rapidly growing internet traffic demand in Pakistan. It is estimated that 17 million people will get benefit from this project. However, every project has some undesirable impacts. The aim of this research paper is twofold; 1st to trace out the pros and cons of CPFOP. 2ndly, performing a risk assessment of CPFOP by using Fuzzy VIKOR technique. This approach will help in prioritizing a list of failure modes of Fiber Optic Cable (FOC). Lastly, this paper will help authorities for optimizing and safeguarding national interest in the wake of CPFOP.  相似文献   

14.
    
A photosensitive water-borne overcoat comprising poly(vinyl alcohol), a glycoluril crosslinker, and a water-soluble photoacid generator was developed. The passivation coating has two features: low-temperature processability and applicability to organic-solvent-susceptible films. Photo-exposure and subsequent baking at 85 °C and development with water produced PGMEA-insoluble and transparent overcoat patterns. Uncured color patterns that were susceptible to the PGMEA-based coating solution remained intact after water-based overcoat application. By exploiting the features of the passivation coating, color patterns of green, red, and white were produced onto a glass substrate at a process temperature of 85 °C.  相似文献   

15.
    
Smart manufacturing has great potential in the development of network collaboration, mass personalised customisation, sustainability and flexibility. Customised production can better meet the dynamic user needs, and network collaboration can significantly improve production efficiency. Industrial internet of things (IIoT) and artificial intelligence (AI) have penetrated the manufacturing environment, improving production efficiency and facilitating customised and collaborative production. However, these technologies are isolated and dispersed in the applications of machine design and manufacturing processes. It is a challenge to integrate AI and IIoT technologies based on the platform, to develop autonomous connect manufacturing machines (ACMMs), matching with smart manufacturing and to facilitate the smart manufacturing services (SMSs) from the overall product life cycle. This paper firstly proposes a three-terminal collaborative platform (TTCP) consisting of cloud servers, embedded controllers and mobile terminals to integrate AI and IIoT technologies for the ACMM design. Then, based on the ACMMs, a framework for SMS to generate more IIoT-driven and AI-enabled services is presented. Finally, as an illustrative case, a more autonomous engraving machine and a smart manufacturing scenario are designed through the above-mentioned method. This case implements basic engraving functions along with AI-enabled automatic detection of broken tool service for collaborative production, remote human-machine interface service for customised production and network collaboration, and energy consumption analysis service for production optimisation. The systematic method proposed can provide some inspirations for the manufacturing industry to generate SMSs and facilitate the optimisation production and customised and collaborative production.  相似文献   

16.
    
Process industry systems under unstable working conditions are prone to potential anomalies, deviating from the original transition trajectory, and taking longer than expected to return to stability due to persistent disturbances from uncertainties and experience-based regulation errors. The energy waste caused by this situation has not received sufficient attention, and cannot be addressed by existing energy consumption monitoring methods. Herein, an energy consumption mode (ECM) identification and monitoring method under unstable working conditions is proposed, consisting of ECM identification model and multi-mode dynamic monitoring model, focusing on the variation rules of the correlation between energy consumption and other states of the system. In the ECM identification stage, the ECM correlation parameters that reflect the comprehensive production information are selected. Then, given the transfer characteristics of ECM, a Hidden Semi-Markov Model (HSMM) is constructed to fit the migration between modes and the duration within modes. The Variational Bayesian Gaussian Mixture Model is introduced to improve the HSMM, which solves the problem of lacking prior knowledge of ECM and achieves the automatic classification and online identification of ECM. In the dynamic monitoring stage of multi-ECMs, a series of dynamic kernel principle component analysis models are established, and the corresponding monitoring thresholds are set for each ECM. By calculating the maximum of the posteriori probability and the mode thresholds, the ECMs under unstable conditions can be accurately identified and automatically monitored. Compared with previous methods, the proposed method reduces the false detection rate and missed detection rate of abnormal ECM identification to 1.04% and 1.31% in the actual slag grinding production process, which proves its effectiveness.  相似文献   

17.
    
In the era of digitalization, there are many emerging technologies, such as the Internet of Things (IoT), Digital Twin (DT), Cloud Computing and Artificial Intelligence (AI), which are quickly developped and used in product design and development. Among those technologies, DT is one promising technology which has been widely used in different industries, especially manufacturing, to monitor the performance, optimize the progresses, simulate the results and predict the potential errors. DT also plays various roles within the whole product lifecycle from design, manufacturing, delivery, use and end-of-life. With the growing demands of individualized products and implementation of Industry 4.0, DT can provide an effective solution for future product design, development and innovation. This paper aims to figure out the current states of DT research focusing on product design and development through summarizing typical industrial cases. Challenges and potential applications of DT in product design and development are also discussed to inspire future studies.  相似文献   

18.
    
A temporary product collaborative design team (PCDT) formed by customers and candidate service providers is the main organization form required to complete the task of product collaborative design (PCD) under the open innovation model. Therefore, the aim of this study was to implement synergy effect-based member combination selection (SE-MCS) while ensuring customer participation in the PCD. First, the conceptual framework of SE-MCS method was developed to characterise the SE-MCS process that includes the customer. Second, SE-MCS indicators were determined by analysing the characteristics of PCD under the open innovation model, and the quantitative calculation methods for these indicators were provided. Subsequently, the mathematical model for SE-MCS considering customer participation was established, and a multi-objective optimisation algorithm was adopted to identify the optimal scheme. Finally, the formation of a design team for a beach waste collection vehicle was performed to verify the proposed method. The results showed that the proposed method is more suitable to implement SE-MCS of PCD under the open innovation model. It can facilitate the smooth operation of PCD tasks and improve the quality and efficiency of teamwork, thereby increasing customer satisfaction.  相似文献   

19.
    
Enhancing the earthquake behavioral responses and post-earthquake evacuation preparedness of building occupants is beneficial to increasing their chances of survival and reducing casualties after the mainshock of an earthquake. Traditionally, training approaches such as seminars, posters, videos or drills are applied to enhance preparedness. However, they are not highly engaging and have limited sensory capabilities to mimic life-threatening scenarios for the purpose of training potential participants. Immersive Virtual Reality (IVR) and Serious Games (SG) as innovative digital technologies can be used to create training tools to overcome these limitations. In this study, we propose an IVR SG-based training system to improve earthquake behavioral responses and post-earthquake evacuation preparedness. Auckland City Hospital was chosen as a case study to test our IVR SG training system. A set of training objectives based on best evacuation practice has been identified and embedded into several training scenarios of the IVR SG. Hospital staff (healthcare and administrative professionals) and visitors were recruited as participants to be exposed to these training scenarios. Participants’ preparedness has been measured along two dimensions: 1) Knowledge about best evacuation practice; 2) Self-efficacy in dealing with earthquake emergencies. Assessment results showed that there was a significant knowledge and self-efficacy increase after the training. In addition, participants acknowledged that it was easy, helpful, and engaging to learn best evacuation practice knowledge through the IVR SG training system.  相似文献   

20.
    
Enhancing evacuee safety is a key factor in reducing the number of injuries and deaths that result from earthquakes. One way this can be achieved is by training occupants. Virtual Reality (VR) and Serious Games (SGs), represent novel techniques that may overcome the limitations of traditional training approaches. VR and SGs have been examined in the fire emergency context; however, their application to earthquake preparedness has not yet been extensively examined.We provide a theoretical discussion of the advantages and limitations of using VR SGs to investigate how building occupants behave during earthquake evacuations and to train building occupants to cope with such emergencies. We explore key design components for developing a VR SG framework: (a) what features constitute an earthquake event; (b) which building types can be selected and represented within the VR environment; (c) how damage to the building can be determined and represented; (d) how non-player characters (NPC) can be designed; and (e) what level of interaction there can be between NPC and the human participants. We illustrate the above by presenting the Auckland City Hospital, New Zealand as a case study, and propose a possible VR SG training tool to enhance earthquake preparedness in public buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号