首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用混凝沉淀-Fenton催化氧化组合工艺对蒽醌染整废水进行处理,研究了混凝剂和Fenton试剂投加量以及各种反应条件对处理效果的影响。试验结果表明,当pH值为6.2、A12(SO4)3投量为300mg/L、PAM投量为3mg/L、沉淀时间为30min时,混凝沉淀出水的COD为233~260mg/L,色度为15~20倍;后续处理采用Fenton试剂催化氧化,当FeSO4投量为200mg/L、H2O2投量为100mg/L、pH值为5.0、反应时间为30min时,出水色度≤10倍,BOD5≤10mg/L,COD≤50mg/L。  相似文献   

2.
针对垃圾渗滤液高COD、高氨氮的特征,选用了混凝沉淀、Fenton氧化、蒸发及其组合工艺对垃圾渗滤液进行预处理,通过单因素试验,探讨了各工艺的最佳运行条件。试验结果表明,采用混凝沉淀法时,PAFC最佳投加量为30 mg/L,PAM最佳投加量为4 mg/L;采用Fenton氧化法时,H2O2最佳投加量为1.5‰,H2O2∶Fe2+最佳质量比为10∶3;垃圾渗滤液的最佳预处理工艺为混凝沉淀+Fenton氧化+蒸发,此时COD,NH4-N+的去除率分别为91.22%,86.73%,为后续生化处理提供了良好的反应条件。  相似文献   

3.
Fenton试剂氧化法深度处理焦化废水的研究   总被引:11,自引:2,他引:9  
以实际焦化废水经A2O工艺处理后的出水为研究对象,考察了Fenton试剂氧化法深度处理焦化废水的效果和影响因素。结果表明,Fenton试剂氧化法对焦化废水具有良好的深度处理效果,在进水COD为100~340mg/L、色度为480~940倍的条件下,出水COD和色度等指标均可达到《城市污水再生利用工业用水水质》(GB/T19923—2005)的要求。在试验条件下,最佳的反应参数:初始pH值为2.5,反应温度为40~50℃,Fe2+投加量为0.4mmol/L,反应时间为2~3h,H2O2投加量为4~8mmol/L。  相似文献   

4.
本文通过介绍在常规处理化工废水基础上投加高分子PAM助凝剂强化混凝,探讨强化混凝处理化工废水的可行性及影响因素.结果表明,投加阴离子型PAM是降低废水中有机物含量的有效方法,混凝剂投量为15mg/L,阴离子型PAM投量为0.5mg/L分别将原废水沉后浊度降低至8NTU,COD降低至150mg/L.本试验结果为实际工程的应用提供了技术参考.  相似文献   

5.
采用兼氧调节/混凝沉淀/接触好氧工艺对广州某纺织印染厂印染综合废水进行预处理,考察了不同日处理量下对废水中COD、NH3-N、色度的去除效果及对pH值的稳定作用。结果表明:处理量从15 m3/d增至21 m3/d,经兼氧调节/混凝沉淀/接触好氧预处理后,出水COD、NH3-N、色度分别达到150~200 mg/L、1~3 mg/L、100~125倍,水质达到后续深度处理的要求。与该厂现有工艺相比,该工艺无需加碱调节废水pH值,且混凝剂投加量少,节省了运行成本。  相似文献   

6.
混凝是降低雨水浊度的有效手段,通过研究改变混凝剂PAFC投加量、原水pH值、慢速搅拌时间对絮凝体分形维数及出水浊度的影响,得到了混凝过程中最佳混凝剂投加量、最佳原水pH值、最佳慢速搅拌时间。实验结果表明,城市雨水混凝处理单元过程中混凝剂PAFC的最佳投加量为50 mg/L,最佳原水pH值为8,最佳慢速搅拌时为10 min。同时,正交实验表明,混凝剂PAFC投加量与原水pH值为影响混凝处理单元的主要因素,而慢速搅拌时间为次要影响因素。  相似文献   

7.
针对喷织废水的特点,在定性试验了各种絮凝剂的絮凝效果后,定量分析破乳剂及高效复合絮凝剂的最佳投加量,在投加石灰、高效复合絮凝剂及PAM的情况下,色度去除率均可达40%以上,CODCr的去除率均可达70%以上。当pH=7.6,石灰投加量为80mg/L,高效复合絮凝剂投加量为80mg/L,PAM投加量为2mg/L时,COD及色度去除率分别可达83.1%和70%,出水直接可达《污水综合排放标准》。  相似文献   

8.
化学—混凝沉淀法处理低浓度含氟废水研究   总被引:9,自引:0,他引:9  
为了解决某半导体集成电路厂含氟废水达标排放的问题,按照该厂排放的含氟废水中的氟离子浓度配制试验用水,采用化学一混凝沉淀法进行除氟试验,确定了最佳的药剂组合和工艺条件.结果表明,当CaCl2投加量为1 200 mg/L,调节CaCI2混合反应出水pH值为10.5,且PAC和PAM的投加量分别为400 mg/L和2 mg/L时,出水中残余氟离子浓度可降至4.6 mg/L,达到了<污水综合排放标准>(GB 8978-1996)的一级标准.投加PAM可加快沉淀速度,强化除氟效果,沉淀时间宜控制为15 min.  相似文献   

9.
《Planning》2015,(6)
以煤化工废水为研究对象,采用聚合氯化铝铁(PAFC)混凝和芬顿高级氧化两种工艺对其进行预处理,利用正交试验探讨了混凝与芬顿氧化反应各因素对煤化工废水预处理效果的影响。研究结果表明:先投加聚合氯化铝铁絮凝反应18 min后,静止沉淀30 min,然后投加芬顿试剂反应2 h,能够获得较好的化学需氧量(COD)预处理效果。其最优条件为:混凝p H=3.5,聚合氯化铝铁投加量为400 mg/L,n(H_2O_2)/n(COD)的值为1.25,n(Fe2+)/n(H_2O_2)的值为1.00。  相似文献   

10.
研究了铁催化内电解法对染料中间体废水的预处理效果,考察了初始pH、曝气时间、铁投加量、催化反应时间等因素的影响。结果表明,在初始pH值为4、曝气时间为3 h、铁投加量为100 g/L、催化反应时间为30~60 m in的条件下,预处理效果最佳,对COD和色度的去除率可分别达到58.51%和89.07%,废水的COD浓度和色度可分别从5 047 mg/L和6 832倍降至2 094mg/L和747倍。  相似文献   

11.
PAC和PAM复合混凝剂处理垃圾渗滤液的研究   总被引:4,自引:1,他引:3  
通过投加混凝剂聚合氯化铝(PAC)和助凝剂聚丙烯酰胺(PAM)对垃圾渗滤液进行混凝沉淀处理,根据单因素和正交试验确定其最佳工艺条件.结果表明,混凝的最佳条件:PAC投加量为750 mg/L、PAM投加量为15 mg/L、快速(150 r/min)搅拌1 min、中速(45 r/min)搅拌6min、慢速(35 r/min)搅拌7 min、在快速混合之后投加助凝剂.在该处理条件下,系统对垃圾渗滤液中COD和浊度的去除率达到最大,分别为27.45%和65.80%.  相似文献   

12.
造纸废水中由于含有木质素及其衍生物具有较高的色度和COD,水处理中多采用铝盐混凝剂通过混凝沉淀加以净化。混凝反应包括混合和絮凝两个过程,影响这两方面的因素很多,包括混凝剂的种类、混合速度、水质特征等等[1]。其中混凝剂的投加量、pH值影响着混凝反应进程和结果,也决定工程应用的基建与运行费用。本文就pH值和混凝剂投加量对造纸废水混凝反应的影响进行研究,浅谈造纸废水混凝反应的机理。  相似文献   

13.
以焦化蒸氨废水经生物处理后的二沉池出水为处理对象,研究了Fenton氧化/粉末活性炭(PAC)吸附工艺对其深度处理效果及影响因素。结果表明,Fenton氧化/PAC吸附工艺对该废水的深度处理效果较好,在进水COD为298.8 mg/L、UV254为5.74 cm-1、色度为600倍的条件下,对COD和UV254的去除率可分别达到72.9%和88.8%,出水COD可降至81.38 mg/L,色度降至5倍,达到了《钢铁工业水污染物排放标准》(GB 13456—92)的一级标准。Fe2+/H2O2值、Fenton反应和PAC吸附时间、H2O2和PAC投加量、初始pH值、水温等对组合工艺的深度处理效果均有一定的影响。  相似文献   

14.
针对再生水厂原水高色度、高COD的特殊水质,提出了高锰酸钾预氧化+预氯化协同预处理技术。研究结果表明,该预处理方法强化了混凝沉淀—微滤工艺对色度和COD的去除效果,同时提高了滤膜的反洗恢复率。结合水厂设备配置等因素,确定最佳预氯化投量为4~5 mg/L、最佳高锰酸钾投量为0.4~0.5 mg/L。  相似文献   

15.
本研究以近期台风天降雨时水源水为研究对象,模拟混凝沉淀工艺烧杯试验,改变聚合氯化铝(PAC)投加量、聚丙烯酰胺(PAM)投加量和水源水p H值因素,进行单因素实验和正交实验确定最佳混凝条件为PAC投加量为6 mg/L,PAM投加量为20μg/L,生产用水p H调为8.5。在上述最佳处理条件下,水源水浊度由48.5NTU经过10分钟的沉淀降为3.4NTU,浊度去除率为92.99%,有效减轻滤池的过滤负荷。  相似文献   

16.
通过烧杯试验,确定了采用混凝、沉淀工艺深度处理城市污水处理厂二级出水时,最佳的混凝剂组合及投量。结果表明,铝盐混凝剂与PAM组合使用时比铁盐混凝剂与PAM组合使用时的处理效果更好,当PAC+PAM的组合投量为20mg/L+5mg/L或30mg/L+1mg/L、硫酸铝+PAM的组合投量为30mg/L+5mg/L时,混凝、沉淀出水浊度为2.5~3.5NTU,COD为25-40mg/L,TP为0.06-0.12mg/L。由于混凝后水中所形成的絮体较小,难于沉淀,因此混凝沉淀工艺对SS的去除效果较差,实际工程中可考虑增设过滤单元。  相似文献   

17.
焦伟  刘译阳 《城市勘测》2020,30(6):40-42
开展实验室模拟苯酚废水的二氧化钛光催化氧化实验。结果表明:在苯酚废水曝气量为0~3L/min的条件下,随着曝气量的增大,COD去除率先增大后减小;初始浓度不变,光照时间为1h的条件下, 调节pH值在3~11,苯酚废水COD去除率随着pH值的增大而减小,当pH值为11时, COD去除率又开始增 大,酸性条件比碱性条件下COD去除率高;随着二氧化钛投加量的增加,COD去除率增大,当二氧化钛投加量 为10g/L时,COD去除率反而降低,二氧化钛最佳投加量为3g/L;随着苯酚废水初始浓度由75mg/L增加至300mg/L,COD去除率由78.2%降低到58.1%;反应温度的改变对COD和TOC的去除率没有影响。  相似文献   

18.
杨健  杨嬗  吴敏 《中国给水排水》2003,19(Z1):117-119
酒精废水经厌氧生物处理后排出的消化液COD浓度约为6 500 mg/L,BOD5/COD值较低,为此采用好氧生化-铁屑微电解混凝工艺进行了后续处理.结果表明,当好氧生物反应器容积负荷为0.65 kgCOD/(m3*d)、铁屑微电解反应与曝气时间各为1 h、聚铝(PAC)投量为300 mg/L、PAM投量为4 mg/L时,该组合工艺出水COD为156~236 mg/L、BOD5为53.1~82.0 mg/L、SS为12.5~16.10 mg/L、色度为25倍,符合GB 8978-1996的二级排放标准.  相似文献   

19.
为了探讨混凝法去除水中纳米颗粒的可行性及最佳条件,研究了无机混凝剂(PAC、PFS、PAFC)和有机絮凝剂(CPAM、APAM、NPAM)对TiO_2纳米颗粒的去除效果,并考察了投加量、pH、沉淀时间、水力条件及有机无机复配对TiO_2纳米颗粒去除效率的影响。单独投加PAC、PFS和PAFC时,三者对应的最高去除率分别为92.51%、84.43%、95.66%。单独投加CPAM、APAM、NPAM时三者对应的去除率仅为61.72%、29.06%、55.37%。复配最佳混凝条件为:投加40mg/LPAC和3mg/LCPAM,pH值为9,G值143.5/s,沉淀时间15min,此时,TiO_2纳米颗粒去除率为99.6%。  相似文献   

20.
简要评价了UV/Fenton法处理液晶显示屏清洗废水的效果,并对其出水的后续处理工艺做了进一步的研究。结果表明:UV/Fenton法能有效降解液晶显示屏清洗废水中的有机物,在合适的反应条件下,能使废水的COD由1468mg/L降至99mg/L,但出水的浊度和色度仍较高。将UV/Fenton法处理出水的pH值调至7左右,配合投加PAC和PAM,反应后静沉20—30min,出水浊度、色度和残余铁离子浓度均大大降低,达到了理想的出水效果。PAC、PAM的适宜投量分别约为10mg/L和0.4mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号