首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first sensing system for metal ions based on the combination of separation/preconcentration by a permeation liquid membrane (PLM) and fluorescence detection with an optical fiber. As a model, a system for the detection of Cu(II) ions was developed. The wall of a polypropylene hollow fiber serves as support for the permeable liquid membrane. The lumen of the fiber contains the strip solution in which Cu(II) is accumulated. Calcein, a fluorochromic dye, acts as stripping agent and at the same time as metal indicator. The quenching of the calcein fluorescence upon metal accumulation in the strip phase is detected with a multimode optical fiber, which is incorporated into the lumen. Fluorescence is excited with a blue LED and detected with a photon counter. Taking advantage of the high selectivity and sensitivity of PLM preconcentration, a detection limit for Cu(II) of approximately 50 nM was achieved. Among five tested heavy metal ions, Pb(II) was the only major interfering species. The incorporation of small silica optical fibers into the polypropylene capillary allows for real-time monitoring of the Cu(II) accumulation process.  相似文献   

2.
Speciation measurements with the permeation liquid membrane (PLM) technology require necessarily a good control of the flux of the analyte. In this perspective, a PLM-based multichannel flow-through cell has been designed. The first objective of this study has been to adapt the classical Levich model commonly used for electrochemical flow devices to the characteristic geometry of the PLM cell. In the latter case and contrary to the Levich model, the effects of the channel lateral walls on the flux of active species through the membrane have to be taken into account. The problem was solved by considering the existence of two parabolic Poiseuille profiles perpendicular to each other and developing along the fluid motion. The theoretical results obtained match satisfactorily with experimental data. The analytical study of this PLM system has been performed with copper(II) ions as test species and has shown that the preconcentration factor is (1) linear at least for preconcentration times of < or = 120 min, (2) reproducible on the same membrane as well as on different membranes, and (3) independent of the initial test metal ion concentration in the sample solution. The capabilities of this cell to determine metal speciation by considering lability of complexes and the flux of metal at variable flow rates of the test solution is also discussed by means of Cu(II)/sulfosalicylic complexes.  相似文献   

3.
Membranes are being increasingly used as an economic alternative for wastewater treatment compared to conventional methods. Ultrafiltration membranes are widely used in metal ions’ rejection. Sulfonated Polyethersulfone (SPES)/polysulfone (PSf) blend flat sheet membranes are prepared using polar solvent N-methyl-2-pyrrolidone (NMP) by the dry–wet phase inversion technique. Polyethylene glycol (PEG-200) is used as a non-solvent additive in the casting solution. The effect of PSf/SPES blend ratio on the morphology, hydrophilicity, water content, porosity, hydraulic resistance, pure water flux, compaction, and molecular weight cut-off (MWCO) of the prepared membranes was studied and found to be improved significantly by the incorporation of SPES in the dope solution. Scanning electron microscopy (SEM) studies revealed that the membranes formed had an asymmetric structure with a thin skin layer and porous sublayer. The prepared membranes were used for rejection of Cu(II) and Zn(II) which are complexed with water-soluble chelating polymer polyethyleneimine. The results show that the order of rejection is Cu(II) ion > Zn(II) ion. Thus, it is worth mentioning that the PSf/SPES blend ultrafiltration membranes prepared in this study would offer immense potential in removal of toxic metal ion from industrial effluents.  相似文献   

4.
In this study, the adsorption conditions of Cu(II), Pb(II) and Cd(II) metal ions onto sporopollenin have been studied. The different variables effecting the sorption capacity such as pH of the solution, adsorption time, initial metal ion concentration and temperature have been investigated. Adsorption isotherms correlated well with the Freundlich type adsorption isotherm and adsorption capacities were found to be 0.0195, 0.0411 and 0.0146 mmol g(-1) for Cu(II), Pb(II) and Cd(II) metal ions, respectively. Experimental data were also evaluated to find out kinetic characteristics of the adsorption process. Adsorption processes for three target heavy metal ions were found to follow pseudo-second order type adsorption kinetics. Intraparticle diffusion was found to take part in adsorption processes but it could not be accepted as the primary rate-determining step. The mean free energies of adsorption (E) were found to be between 8 and 16 kJ mol(-1) for the metal ions studied and therefore adsorption mechanism for the adsorbent was explained as an ion-exchange process. But it was observed that chelating effect is also playing an important role in the adsorption of metal ions onto sporopollenin. Thermodynamic parameters, DeltaH degrees , DeltaS degrees and DeltaG degrees were also calculated from graphical interpretation of the experimental data. Standard heats of adsorption (DeltaH degrees ) were found to be endothermic and DeltaS degrees values were calculated to be positive for the adsorption of Cu(II), Pb(II) and Cd(II) ions onto the adsorbent. Negative DeltaG degrees values indicated that adsorption process for these three metal ions onto sporopollenin is spontaneous.  相似文献   

5.
The role of lauric acid (LAH) in the transport of copper(II) through a permeation liquid membrane (PLM) comprising 1,10-didecyldiaza-18-crown-6 (22DD) and lauric acid (ratio 1:1) in 1:1 v/v toluene/phenylhexane has been investigated by determining the stoichiometry of metal extraction and of the metal complex formed in the organic phase by performing 1H NMR and liquid/liquid and liquid/membrane extraction measurements. In the absence of copper(II), the 1H NMR data suggest that there is a strong interaction between the proton of LAH and the nitrogen of the 22DD macrocycle but no interaction between the aliphatic long chains of LAH and 22DD. Thus, in the organic solution, the two compounds are associated as (22DD-H)(+)-LA-, the laurate being away from (22DD-H)+. The signal intensity of the acidic proton was found to decrease when the metal Pb(II) was incorporated by the carrier after its extraction from the aqueous phase. Additionally, liquid/liquid as well as liquid/membrane extraction results reveal that Cu(II) extraction proceeds via the loss of two protons from the organic phase. The Cu(II) is found to be located in the 22DD cavity and the stoichiometry of the complex in the organic phase is (22DD-Cu)(2+)-2LA-. Metal extraction is governed by 22DD and laurate acts only as counteranion. An unexpected feature was observed in the liquid/liquid extraction which was that, at low 22DD and LAH concentrations, the slope for log(Kp) = f(pH) was 2 whereas it was much lower at high carrier concentration. This unexpected result seems to stem from impurities present in 22DD: only 0.1 mol% of impurity can indeed influence the exchange ratio of Cu(II) and H+. This type of anomaly, however, is not found in the normal procedure of liquid/membrane extraction possibly due to the lower carrier/metal molar ratio which is used in the classical PLM conditions.  相似文献   

6.
Toxic heavy metal ion removal from industrial effluents are gaining increased visibility owing to environmental concern and saving precious materials. In this work, an attempt has been made to remove the valuable metal ions using modified ultrafiltration (UF) blend membranes based on cellulose acetate (CA) and sulfonated poly(ether imide) (SPEI) were prepared in the presence and absence of additive, poly(ethylene glycol) 600 (PEG600) in various compositions. Prepared membranes were characterized in terms of pure water flux (PWF), water content and membrane hydraulic resistance. High flux UF membranes were obtained in the range of 15-25 wt% SPEI and 2.5-10 wt% PEG600 in the polymer blend. The molecular weight cut-off (MWCO) of the blend membranes were determined using protein separation studies found to vary from 20 to greater than 69 kDa. Surface morphology of the blend membranes were analysed with scanning electron microscopy. Studies were carried out to find the rejection and permeate flux of metal ions such as Cu(II), Ni(II), Zn(II) and Cd(II) using polyethyleneimine as the chelating ligand. On increasing the composition of SPEI and PEG600, the rejection of metal ions is decreasing while the permeate flux has an increasing trend. These effects are due to the increased pore formation in the CA/SPEI blend membranes because of the hydrophilic SPEI and polymeric additive PEG600. In general, it was found that CA/SPEI blend membranes displayed higher permeate flux and lower rejection compared to pure CA membranes. The extent of separation of metal ions depends on the affinity of metal ions to polyethyleneimine to form macromolecular complexes and the stability of the formed complexes.  相似文献   

7.
Multilayer composite membranes with high removal capability for metal ion were prepared using electrostatic self-assembly (ESA) technique. Especially, self-assembled multilayer of chitosan microspheres and PAA were formed onto charged surface of polyacrylonitrile (PAN) membranes. It was confirmed that the alternate multilayer of chitosan and PAA were deposited on the base membrane surface. The formation of the ESA layer-by-layer of chitosan/PAA or chitosan microspheres/PAA onto the base membrane surface functionally equipped the membrane with removal capability for Cu2+. Especially, membranes with chitosan microspheres/PAA ESA layers on the surface showed relatively higher adsorption capability as compared with membranes with chitosan/PAA ESA layers. Besides, the influence of the pH of metal ion solution on the metal ion adsorption property of ESA modified membrane was investigated. It was proposed that the layer-by-layer self-assembled deposition of chitosan microspheres would be a new approach to functionalize membrane with high adsorption capability for metal ions.  相似文献   

8.
Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater.  相似文献   

9.
Polymeric plasticized membranes (PPM) are a new perspective to solve the stability problems of supported liquid membranes to perform the simultaneous separation, concentration and purification of valuable species from aqueous solutions.Cellulose triacetate (CTA) membranes containing the crown ether dibenzo-18-crown-6 (DB18C6) as a fixed carrier were prepared and their performance tested for the transport of copper(II) ions. This study showed that PPM properties were influenced by the membrane composition. The transport studies revealed that diffusion rate was dependent on film thickness, the presence of a plasticizer, 2-nitrophenyloctylether, which plays also a critical role on the membrane physical characteristics (especially malleability) and the quantity of fixed crown ether. Porosimetry analyses showed conversely to other works with different carriers that all the membranes prepared are not porous for all membrane compositions. However, SEM analysis revealed a porous texture when the quantity of crown ether is higher than that of CTA. FTIR, X-ray and TGA characterizations showed that all the constituents of the membrane remain unaltered within the membrane without chemical interactions between them (no presence of new bonds in the FTIR spectra). Hence, transport mechanism of the copper(II) ions seems to be a jumping from site to site.  相似文献   

10.
Polyethyleneglycolmethacrylate (PEGMA) and vinylimidazole (VI) were used in order to obtain microspheres of PEGMA-VI copolymers that can be used in heavy metal removal applications. The obtained copolymers were characterized and their use as sorbents in heavy metal removal was investigated. In the first part of the study, PEGMA-VI microspheres were prepared by suspension polymerization method. The obtained swellable microspheres with 10-50 microm average diameter did not have permanent porosity according to the morphological and physicochemical determinations. The sizes of microspheres became smaller with increasing VI and cross-linker ethyleneglycoldimethacrylate (EGDMA) contents and increasing agitation rate. The VI content, EGDMA ratio, pH and ionic strength were determined as the effective parameters on the swelling behavior of PEGMA-VI microspheres. In the second part of the study, Cu(II) ions were used as a model species in order to investigate the usability of the obtained PEGMA-VI microspheres in heavy metal removal. Adsorption capacities under optimum conditions were determined. The Cu(II) ion adsorption capacity increased by increasing the initial Cu(II) ion concentration, and it reached the maximum value (i.e., 30 mg Cu(II)/g PEGMA-VI microspheres) at 400 mg Cu(II)/L initial Cu(II) ion concentration under the determined optimum conditions. Microspheres were found to be reusable after desorption for several times.  相似文献   

11.
采用静电纺丝技术制备聚丙烯腈/醋酸纤维素(PAN/CA)纳米纤维膜,通过化学改性制备偕胺肟化聚丙烯腈/再生纤维素(AOPAN/RC)纳米纤维膜,研究了纳米纤维膜对单一金属离子(Fe~(3+))和混合金属离子(Cu~(2+)、Cd~(2+)、Fe~(3+))的吸附性能。通过扫描电镜、红外光谱、X射线能谱仪等测试对纳米纤维膜进行了表征,并通过静态接触角测定纳米纤维膜亲水性能。研究表明,改性后制备的AOPAN/RC纳米纤维膜的亲水性能得到较大改善,同时纳米纤维膜能够高效吸附溶液中的金属离子,纳米纤维膜对单一组分Fe~(3+)的饱和吸附可达411.21mg/g,对于混合金属离子溶液,纳米纤维膜对其吸附能力顺序为Fe~(3+)Cu~(2+)Cd~(2+),而且纳米纤维膜具备优良的重复使用能力。  相似文献   

12.
The effective removal of toxic heavy metals from environmental samples still remains a major topic of present research. Metal-chelating membranes are very promising materials as adsorbents when compared with conventional beads because they are not compressible, and they eliminate internal diffusion limitations. The purpose of this study was to evaluate the performance of a novel adsorbent, Procion Green H-4G immobilized poly(hydroxyethylmethacrylate (HEMA)/chitosan) composite membranes, for the removal of three toxic heavy metal ions, namely, Cd(II), Pb(II) and Hg(II) from aquatic systems. The Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes were characterized by elemental analysis, scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The immobilized amount of the Procion Green H-4G was calculated as 0.018+/-0.003 micromol/cm(2) from the nitrogen and sulphur stoichiometry. The adsorption capacity of Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for selected heavy metal ions from aqueous media containing different amounts of these ions (30-400mg/l) and at different pH values (2.0-6.0) was investigated. The amount of Cd(II), Pb(II) and Hg(II) adsorbed onto the membranes measured at equilibrium, increased with time during the first 45 min and then remained unchanged toward the equilibrium adsorption. The maximum amounts of heavy metal ions adsorbed were 43.60+/-1.74, 68.81+/-2.75 and 48.22+/-1.92 mg/g for Cd(II), Pb(II) and Hg(II), respectively. The heavy metal ion adsorption on the pHEMA/chitosan membranes (carrying no dye) were relatively low, 6.31+/-0.13 mg/g for Cd(II), 18.73+/-0.37 mg/g for Pb(II) and 18.82+/-0.38 mg/g for Hg(II). Competitive adsorption of the metal ions was also studied. When the metal ions competed with each other, the adsorbed amounts were 12.74+/-0.38 mg Cd(II)/g, 28.80+/-0.86 mg Pb(II)/g and 18.41+/-0.54 mg Hg(II)/g. Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) membranes can be regenerated by washing with a solution of nitric acid (0.01 M). The percent desorption achieved was as high as 95%. These novel membranes are suitable for repeated use for more than five adsorption/desorption cycles without any considerable loss in adsorption capacity. Adsorption equilibria were well described by Langmuir equation. It can be concluded that Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) membranes may effectively be used for the removal of Cd(II), Pb(II) and Hg(II) ions from aqueous solutions.  相似文献   

13.
采用孔径为1.5 nm的TiO2纳滤膜,在压力0.4~0.8 MPa,pH值3~7的条件下,考察了膜对浓度范围为50~500 mg/L的Cu(NO3)2、Ni(NO3)2、ZnC12和CdC12四种单组份重金属溶液的截留性能.结果表明:除Cd2+外,膜对重金属离子的截留率随溶液浓度的增大先增大,当浓度达到200 mg/L后趋于稳定;升高压力膜的离子截留率会略有增加;当pH=6时,膜对Ni2+和Cd2+的截留率最低,而对Cu2+和Zn2+的截留率在pH=5~6时达到最高.TiO2膜对Cu2+、Ni2+、Zn2+和Cd2+的最高截留率分别可以达到96.9%、95.9%、92.5%和83.2%.  相似文献   

14.
Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions.  相似文献   

15.
To obtain glass membrane electrodes selective for anions and metal ions, pH electrode glass membranes were modified by a sol-gel method using a quaternary ammonium salt and a bis(crown ether). A chloride ion-sensing glass membrane was designed, in which a pH electrode glass membrane was modified chemically by an alkoxysilyl quaternary ammonium chloride. X-ray photoelectron spectroscopy confirmed the chemical bonding of the quaternary ammonium moiety to the starting glass surface, which afforded the first example of glass-based "anion"-sensing membranes. A neutral carrier-type sodium ion-selective glass membrane was also fabricated which encapsulates a bis(12-crown-4) derivative in its sol-gel-derived surface. Both sol-gel-modified anion and metal ion-selective glass electrodes exhibited high sensitivity to their ion activity changes. The present sol-gel modification paves the way for designing glass-based ion sensors with tailor-made ion selectivities toward anions as well as cations.  相似文献   

16.
A pre-concentration method was developed for determination of trace amounts of cadmium, copper and lead in water samples by FAAS after coprecipitation by using potassium 4-methylpiperidinedithiocarbamate (K4-MPDC) as a chelating agent and Bi(III) as a carrier element. This procedure is based on filtration of the solution containing precipitate on a cellulose nitrate membrane filter following Cd(II), Cu(II) and Pb(II) coprecipitation with Bi(III)4-MPDC and then the precipitates together with membrane filter were dissolved in concentrated nitric acid. The metal contents of the final solution were determined by FAAS. Several parameters including pH of sample solution, amount of carrier element and reagent, standing time, sample volume for precipitation and the effects of diverse ions were examined. The accuracy of the method was tested with standard reference material (MBH, C31XB20 and CRM BCR-32) and Cd, Cu and Pb added samples. Determination of Cd, Cu and Pb was carried out in sea water, river water and tap water samples. The recoveries were >95%. The relative standard deviations of determination were less than 10%.  相似文献   

17.
A technique is presented for determining infinite-dilution diffusion coefficients of complex ions from solution conductivity data. The method involves measuring the conductivities of dilute solutions in which the distribution of complex ions is systematically varied and statistically regressing the data to an equation that effectively relates individual ion diffusion coefficients to solution conductivity. The procedure is simple and requires no specialized equipment to perform. Unlike methods that require a concentration gradient, the solution composition is homogeneous and at equilibrium during measurements, which is a significant advantage when labile complexes are being studied. In this paper, diffusion coefficients of cuprous cyanide complexes are determined. Statistical analysis yields the infinite-dilution diffusion coefficients of Cu(CN)(2)(-), Cu(CN)(3)(2-), and Cu(CN)(4)(3-) at 25 °C as 1.43 × 10(-5) ± 9%, 1.08 × 10(-5) ± 9%, and 6.21 × 10(-6) ± 22% cm(2)/s, respectively.  相似文献   

18.
Laser ablation inductively coupled plasma mass spectrometry was used to evaluate ion depth profiles across ion-selective membranes. Advantageously, this approach does not require incorporation of additional components (e.g., chromoionophore) in the membrane composition, as compared to that used in typical potentiometric applications. Moreover, comparison of the distribution of ions in differently pretreated membranes is possible. Concentration profiles of primary and interfering agent (Na+) ions were recorded, for example, of Pb2+-selective poly(vinyl chloride)-based membranes. It was found that the contents and the distribution of Pb(2+) and Na+ ions across the membrane is strongly dependent on the composition of the solutions to which both sides of the membrane are exposed during preconditioning and on the plasticizer included in the membrane formulation. Typical plasticizers, bis(2-ethylhexyl sebacate) (DOS) and the more polar 2-nitrophenyl octyl ether (o-NPOE), were used. It was found that faster ion transport occurs for o-NPOE, and the membrane saturation with Pb2+ ions was achieved within less than 20 h for a 400-microm-thick membrane. In the case of the less polar plasticizer DOS, due to slower rate of ion transport, even after 20 h, the Pb2+ concentration gradients were still visible within the membrane. On the basis of concentration profiles, primary ion diffusion coefficients in both membranes were calculated, and the value obtained for o-NPOE containing membrane was found to be approximately 2 times higher than for its DOS-plasticized counterpart.  相似文献   

19.
Competitive metal binding to a silicate-immobilized humic material   总被引:1,自引:0,他引:1  
The investigation of the competitive binding of metal ions to a biogenic material comprised of organic peat immobilized in a polysilicate matrix was undertaken. This material was packed into 5.0mL bed-volume columns using 40-60mesh size particles. Two separate mixtures of metal ions were studied by monitoring the solution pH and the concentration of each metal in the effluent as a function of the volume of influent introduced to the material. These mixtures contained either the metal ions Ca(2+), Mg(2+), and Cu(2+) or the ions Cu(2+), Hg(2+), and Pb(2+). A general order of binding affinities was determined to be Mg(2+)相似文献   

20.
采用壳聚糖(CS)对天然高分子丝素(SB)进行改性,制备了丝素-壳聚糖(SB-CS)共混膜.FTIR、TGA、SEM的分析表明,该共混膜中SB和CS具有良好的相容性,壳聚糖改善了丝素膜的吸水性和机械性能.通过渗透实验发现不同的金属离子在共混膜中的渗透速率有很大的差异,一些常见的金属离子渗透速率的大小顺序为:K+>Ca2+>Cd2+>Pb2+>Cu2+>Ni2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号