首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
为明确柳林矿区煤层含气量主控因素,在对沉积作用、煤层埋深、灰分等控气因素分析的基础上,着重从水文地质和顶板岩性2主控因素出发,采用灰色关联和相关分析等数学方法,从煤层顶板厚度20 m以内的岩性组合关系上探求了柳林矿区煤层气的控气主导因素。结果表明:山西组3+4号煤层含气量变化符合一般规律,在顶板岩性组合关系中受封闭型(泥岩)影响最明显,为陆相地层气压封闭型成藏;太原组8+9号煤层含气量与煤层埋深、灰分、直接顶板岩性无直接关系,与顶板灰岩的厚度有关,组合关系受动态型(灰岩)主控,是海陆交互相地层水压封闭型成藏。  相似文献   

2.
煤层甲烷碳同位素与含气性关系   总被引:1,自引:0,他引:1       下载免费PDF全文
孟召平  张纪星  刘贺  刘珊珊 《煤炭学报》2014,39(8):1683-1690
煤层气甲烷碳同位素值是反映煤层气成因及赋存条件的有效参数。通过对沁水盆地沁南东区块煤层甲烷碳同位素和煤储层含气性测试资料分析,剖析了3号煤层甲烷碳同位素分布特征,建立了煤层甲烷碳同位素与镜质组反射率、煤层埋藏深度和煤储层含气性之间的相关关系和模型,揭示了煤层甲烷碳同位素分布的控制机理。研究结果表明:本区3号煤层自然解吸气甲烷碳同位素为-28.89‰~-53.27‰,平均-36.48‰。与全国其他地区同等演化程度的煤层气相比总体偏重,表现出煤层具有较好的保存条件;3号煤层甲烷碳同位素与镜质组反射率和煤层埋藏深度之间呈对数函数关系,且随着镜质组反射率和煤层埋藏深度增加而变重,与全国煤层甲烷碳同位素统计规律一致,主要受控于煤层气形成的热动力学机制之下的同位素分异效应和煤层气解吸—扩散—运移过程中甲烷碳同位素的分馏效应;煤层甲烷碳同位素与煤储层含气性之间存在相关性,且随着煤层气含量、煤储层压力和含气饱和度增加,3号煤层甲烷碳同位素也相应变重,且呈对数函数关系,反映控制煤储层含气性的因素与控制煤层甲烷碳同位素的因素存在一致性。  相似文献   

3.
低煤阶煤层气藏水文地质条件的物理模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
采集低煤阶煤岩样品,利用煤层气成藏模拟装置模拟了低煤阶煤层气藏的水文地质条件,探讨了动力条件及地下水化学特征对煤层气保存、富集及成藏的影响.结果表明:强烈的水动力交替作用使煤层气藏中的甲烷碳同位素变轻,甲烷含量降低,N2和CO2含量增大,这对煤层气成藏不利;低煤阶褐煤倾向于低矿化度,有利于生物气的生成和低煤阶煤层气的富集成藏.  相似文献   

4.
准噶尔盆地南缘部分地区低阶煤储层中CO_2的富集,不仅反映了煤层气系统形成和改造过程受多元干预作用,也影响到煤层气资源的品质。为查明该区煤层中富CO_2低阶煤层气藏形成机制,基于煤层气排采井气样,开展了煤层气地球化学研究。结果显示:准南地区煤层甲烷碳、氢同位素整体上偏轻,δ~(13)C_(CH_4)为-6.82%~-4.38%,δ~(13)D_(CH_4)为-29.00%~-30.41%;米泉地区煤层气以生物成因气为主,四工河及玛纳斯地区深部煤层主要发育热成因气,白杨河地区则以混合成因气为主;准南地区煤层气中CO_2浓度差异大,多元地质因素干预明显,二氧化碳碳同位素偏重,δ~(13)C_(CO_2)为-1.54%~2.51%,CO_2来源主要为煤化作用初期热解和微生物成烃伴生。地下水动力条件是决定CO_2富集的关键因素,煤化作用初期生烃阶段产生的CO_2在滞流条件下聚集,微生物作用伴生CO_2在弱径流条件下混入保存;煤层自燃致使烧变岩系发育,进而地表水下渗作用增强所引起的非烃类气体参与煤层气成藏,则符合真正意义上煤层气风氧化作用机制。综合研究认为,差异性地层水溶解消耗作用以及生物成烃改造作用主要影响煤层CO_2的分布特征,煤层气成藏过程中存在的CO_2干预作用形成了封闭滞流原位型、半封闭扰动型以及开放连通型三类煤层气藏,承载着煤层气成因、煤层气藏赋存特征等信息。  相似文献   

5.
本文从资源因素、煤储层因素及保存因素三个方面对沁水盆地和顺区块太原组15#煤层气富集规律进行了分析。结果表明:(1)顶板岩性和上覆盖层累厚度对煤层气的保存有一定的控制作用,与含气量相关性强;(2)构造对煤层气富集有较大的影响,距离断层/陷落柱越近,煤层保存条件越差,煤层含气性越差;(3)埋藏深度对渗透率、产能的影响不明显,但对煤层气含气量成明显正相关,反映埋深对煤层气选区评价具有一定程度的正面影响,对埋深单因素的评价标准应适当放宽。  相似文献   

6.
为了研究水文地质条件与煤层含气性及煤层气产能之间的关系,基于三交区块煤层气井产能在水平上和垂向上存在显著差异,通过对该区水文地质特征进行深入剖析,探讨了其对煤层含气性及气井产能的影响,揭示了水文地质条件对煤层气富集高产的控制作用。研究结果表明:区域上,研究区中南部碛口一带地下水活动弱、矿化度高,为煤层气富集高产的优势区域,具有高含气量、高产气量、低产水量、短排水期的特点;垂向上,山西组地层水较太原组矿化度高,水动力弱,更有利于煤层气富集高产,导致3+4+5号煤层较8+9号煤层含气饱和度高、产气量高、产水量低、排水期短,此外,8+9号煤层顶部灰岩含水层与断层相互作用,不利于煤层气的富集和高产。  相似文献   

7.
上古生界是沁水盆地煤层气勘探的重点层系,本次研究从古交探区山西组和太原组主力煤层聚煤环境的角度出发,分析聚煤环境对煤层气富集的影响。研究表明:古交地区山西组成煤环境为三角洲平原河间洼地、沼泽微相,太原组成煤环境为潮坪和沿岸沼泽微相;有利的顶板—煤层—底板组合有利于煤层气的生成和富集,山西组沼泽—沼泽—天然堤组合和太原组泥坪—沼泽—泥坪的沉积组合是形成煤层气藏的优势沉积相组合。聚煤环境直接控制了煤层分布、厚度及煤质,从而影响煤层气的含气性,煤层厚度越大、有机显微组分越高、灰分含量越低有利于煤层气的富集和保存。  相似文献   

8.
为了弄清造成鄂尔多斯盆地南北部侏罗系煤层含气性差异的主要原因,以盆地内煤层含气量与含气饱和度为基础,从煤层的生气能力、构造运动、水文地质条件与煤层顶底板岩性特征等4个方面进行了分析研究。结果表明,侏罗系煤层在盆地北部保存完整但含气性较差、南部保存不完整但含气性较好。南部煤层热演化程度较北部高,生气强度大,盆地南部地层水矿化度较盆地北部高,地下水动力条件较弱,有利于煤层气的富集和保存,而盆地南北部主要煤层顶底板岩性主要以泥岩为主,顶底板岩性对煤层气的富集影响大致相同。综合分析认为,影响鄂尔多斯盆地南北部侏罗系煤层含气性差异的主要因素是水文地质条件、构造运动和生气能力。  相似文献   

9.
基于沁水盆地南部潘庄区块主煤层的含气性特征,从煤阶、显微煤岩组分、构造、水文地质条件等4个方面探讨了影响该区块主煤层含气性的地质控制因素。结果表明:区块煤层含气性具有2个典型特征,太原组15号煤层含气性好于山西组3号煤层,与水力逸散作用对太原组煤层气保存条件破坏相对微弱的特点相关;含气饱和度随埋深加大呈现先减后增的变化,转折点埋深约500 m。同时发现,该区块随煤阶增高,含气量、孔隙度、吸附性均呈先升后降的变化,认为这是第4次煤化作用跃变对煤层气地质条件控制效应的具体体现;煤层含气量显现为次级向斜控气的典型特征。  相似文献   

10.
基于岩浆活动对煤层气赋存的影响,为得出丰富岩浆活动对煤层气富集作用机理的控制规律,在对赵官煤田煤层气资料、构造条件、煤层灰分、顶底板岩性、煤层埋深、水文地质条件和岩浆活动分析之上,对赵官煤田煤层气赋存特征及其控制因素进行了研究。结果表明:上组煤(7煤、10煤)煤层气含量、含气饱和度明显大于下组煤(11煤、13煤);煤层气赋存影响不明显;煤层灰分与煤层含气量呈负相关;上组煤顶底板岩性致密,完整性好,利于煤层气保存,下组煤顶板受岩浆岩侵入,完整性相对较差,利于煤层气逸散;煤层含气量与煤层埋藏深度正相关,上、下组煤含气量梯度分别为3.67、0.53 m~3/(t·hm);地下水滞水区矿化度高,利于煤层气的保存;岩浆岩附近煤层中煤层气逸散严重,是导致上下煤层含气量相差较大的根本原因。  相似文献   

11.
通过研究沙曲井田煤层含气性特征,分析了影响含气性分布的主控因素,结果表明,不同地质构造类型、水文地质条件、顶底板岩性对煤层气富集的影响均不同;煤层含气量与煤层埋深、上覆基岩厚度、镜质组含量呈正相关关系。总体上看,水文地质有利于煤层气的富集。  相似文献   

12.
通过对焦作矿区二1煤层自上而下连续取样,做含气量、气体成分、甲烷碳同位素、显微煤岩组分和等温吸附等一系列实验,引用吸附势理论计算煤层气含量演化史,并结合煤层的埋藏史和热史进行分析,认为该区存在煤层气的运移和再聚集。揭示出该区存在3种煤层气分馏机理:热解分馏、解吸/吸附—扩散分馏和水溶解分馏。三者共同作用造成煤层底部的构造煤分层δ13C值高于其上部的原生结构煤分层,形成甲烷碳同位素的分馏。解吸/吸附—扩散分馏和水溶解分馏分别造成煤层底部的构造煤分层N2和CO2组分值低于其上部的原生结构煤分层,形成煤层气组分分馏。煤层气的运移、再聚集和多种分馏机理造成该区煤层气较为富集,成为煤层气开发的有利区。  相似文献   

13.
鄂尔多斯盆地黄陵地区侏罗系煤层气来源判识   总被引:1,自引:0,他引:1       下载免费PDF全文
李贵红 《煤炭学报》2018,43(4):1052-1057
鄂尔多斯盆地黄陵地区在煤田勘探、建井和采煤中,发现了小规模的油气显示,推测该区域煤层中存在油型气,这一点与煤层气作为自生自储型资源的常规认识不同。为进一步验证这一推测,从煤层顶板、煤层、底板及采空区采集220组气体样品,开展气体组分、甲烷碳同位素δ13C1、甲烷氢同位素δD、乙烷碳同位素δ13C2的测试。测试结果表明,煤层中气体来源为煤成气和油型气组成的混合气,进一步利用Schoell图版分析,煤层及其围岩中油型混合气主要为裂解凝析气、生物气和石油伴生气。这些气体来源于下部三叠系延长组泥页岩,通过地层中的断层与裂缝,向上运移至侏罗纪煤系中储存下来,提高了煤层含气性。  相似文献   

14.
巢海燕  王延斌 《煤炭学报》2016,41(7):1769-1777
为研究临汾地区煤层气成因类型,在综合前人研究成果的基础上,研究分析了煤芯解吸气成分、井口气成分、碳同位素特征、煤层水地球化学特征及水动力等条件,认为研究区煤层气保存条件整体良好,但甲烷碳同位素偏轻、重烃组分偏少,表明受到了一定因素或次生作用的影响。对比分析导致甲烷碳同位素偏轻、重烃组分偏少的次生改造作用,认为扩散-运移的影响作用最大,还认为临汾区块东缘和薛关一带具备形成次生生物成因气的条件。结合Whiticar图版,认为临汾区块煤层气主要为受到运移-扩散次生作用影响的热成因气,J81井5号和8号煤、J25井8号煤层气为次生生物成因气,J25井5号煤和J60,J62,J11,J80井煤层气为热成因气和次生生物气的混合气。薛关一带和东缘刁口—蒲县东一带虽有次生生物气的补充,但后期保存条件较差,含气量普遍偏低。薛关断裂以西的构造斜坡带,热成因气保存条件良好,含气量高。  相似文献   

15.
煤层气成藏条件分析方法——以韩城地区为例   总被引:1,自引:0,他引:1  
从煤系的沉积、埋藏、煤的演化生气以及气藏的改造定型等方面分析了韩城地区煤层气藏的形成与演化过程,进而对煤层气藏特征及煤层气富集成藏条件进行了剖析。韩城地区整体上为一单斜式煤层气成藏模式,聚煤作用和后期沉积对煤层气藏的形成演化非常有利,煤层气富集成藏的生气、储气及保存条件优越,主要成藏目标煤层厚度大且分布稳定,3号煤层煤层气成藏条件及开发条件较11号煤层优越。  相似文献   

16.
水力封堵型煤层气藏有着自身独特的性质,是最常见的煤层气藏边界,对其深入研究有助于总结受水力影响煤层气富集地区的规律,丰富地质学理论.文章对国内外各类型水力封堵型煤层气藏分析的基础上,根据气藏区域构造特征和岩性特征,将水力封堵型煤层气藏分为两类六型,即构造类:单斜型水力封堵煤层气藏、向斜型水力封堵煤层气藏、断层型水力封堵煤层气藏,以及复合类:水力封堵-物性型煤层气藏、水力封堵-岩性型煤层气藏和水力封堵-断层型煤层气藏.  相似文献   

17.
黔西地区煤层气主要以吸附状态赋存于煤层中,黔西地区煤层气的化学组分主要包括甲烷、硫化氢以及微量的稀有气体,煤层气组分受埋深影响总体上甲烷浓度偏低,氮气浓度偏高。下部煤层高含气量分布范围略大于上部煤层,在煤层层位上平均含气量随煤层层位降低而呈波动式变化。  相似文献   

18.
煤层气藏的水文地质条件是控制煤层气运移、散失、分布和富集的重要因素之一。以西山煤田古交矿区为研究对象,分析产出水离子浓度、水质水型、矿化度和煤层含气量分布特征,结合地下水动力场分布特征,划分区域水文地质单元,并讨论不同单元内含气量分布特征及地质控制机理。结果表明:(1)该区煤层气井产出水离子以Na~+,HCO_3~-为主,水型主要为NaHCO_3型,该区煤层气井产出水矿化度介于632~2 512 mg/L,属于淡水-微咸水;(2)根据折算水位和矿化度分布特征将矿区划分为补给径流区、滞留区以及过渡地带的弱径流区3种水文地质单元,滞留区含气量最高,弱径流区次之;(3)古交矿区煤层气的富集成藏受构造、水文地质条件双重控制,在屯兰中部形成单斜-水力封堵型煤层气藏,为全区煤层气最为富集区,东曲断层比较发育,形成地垒-水力封堵型煤层气藏,为煤层气较为富集区。  相似文献   

19.
稳定同位素研究在常规天然气研究中具有重要的作用,本文对甲烷碳同位素的控制与影响因素、煤层气同位素地球化学与成因类型以及煤层甲烷δ^13C值偏轻的原因等方面的研究现状进行了分析,认为在今后工作中应针对煤储层的特点,加强煤层的吸附/解吸特性对甲烷碳同位素分馏作用影响的研究。  相似文献   

20.
《煤矿安全》2021,52(9):1-9
以准噶尔盆地南缘阜康矿区为研究区,对研究区内10口煤层气井的排采气进行了气体组分、甲烷碳同位素、乙烷碳同位素及二氧化碳碳同位素测试,并结合研究区特殊的地质环境特征对煤层气的成因进行了判别。研究发现:阜康矿区煤层气组分包括CH_4(81.79%)、CO_2(14.36%)、N_2(2.28%)和C_(2+)(0.99%),煤层气甲烷碳同位素值δ~(13)C_1分布范围为-58‰~-49‰,平均值为-53‰,乙烷碳同位素值δ~(13)C_2分布范围为-32.2‰~-23.1‰,平均值为-28.1‰,二氧化碳的碳同位素值δ~(13)C(CO_2)分布范围为+8.5‰~+14.2‰,平均值为+12.9‰;研究区煤层气为热成因和次生生物成因的混合成因气,其中的热成因气为热降解成因,次生生物气主要是醋酸发酵形成的产物;急倾斜煤层和火烧区为微生物进入煤层提供了通道;温度适宜、偏酸性且矿化度较低的地下水环境为微生物提供了生存环境;地下水渗流方向与煤层气运移方向相反,具有水力封堵控气作用;火烧区滞水层与煤层顶底板一同对煤层气藏进行有效圈闭,保证了混合成因气的储存。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号