首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We report on the results of a 6-month photometric study of the main-belt binary C-type Asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermione’s physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis, et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005. Icarus 178, 450-464]. A new effective diameter of 187 ± 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 + 0.5/−0.2 g cm−3. We infer a macroscopic porosity of ∼33 + 5/−20%.  相似文献   

2.
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to λ0 = 199.5 ± 0.5° and β0 = 39.8 ± 5° in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps, P., Marchis, F., Michalowski, T., Vachier, F., Colas, F., Berthier, J., Assafin, M., Dunckel, P.B., Polinska, M., Pych, W., Hestroffer, D., Miller, K., Vieira-Martins, R., Birlan, M., Teng-Chuen-Yu, J.-P., Peyrot, A., Payet, B., Dorseuil, J., Léonie, Y., Dijoux, T., 2007. Figure of the double Asteroid 90 Antiope from AO and lightcurves observations. Icarus 187, 482-499). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the “shoulders” of the lightcurves. The bulk density was then recomputed to 1.28 ± 0.04 g cm−3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (∼50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ∼17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.  相似文献   

3.
Using spectra taken with NIRSPEC (Near Infrared Spectrometer) and adaptive optics on the Keck II telescope, we resolved the latitudinal variation of the 3ν2 band of CH3D at 1.56 μm. As CH3D is less abundant than CH4 by a factor of 50±10×10-5, these CH3D lines do not saturate in Titan’s atmosphere, and are well characterized by laboratory measurements. Thus they do not suffer from the large uncertainties of the CH4 lines that are weak enough to be unsaturated in Titan. Our measurements of the methane abundance are confined to the latitude range of 32°S-18°N and longitudes sampled by a 0.04″ slit centered at ∼195°W. The methane abundance below 10 km is constant to within 20% in the tropical atmosphere sampled by our observations, consistent with the low surface insolation and lack of surface methane [Griffith, C.A., McKay, C.P., Ferri, F., 2008. Astrophys. J. 687, L41-L44].  相似文献   

4.
F. Marchis  M. Kaasalainen 《Icarus》2006,185(1):39-63
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100×RHill (1/4×RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D<200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.  相似文献   

5.
Ground-based high angular-resolution images of asteroid (2) Pallas at near-infrared wavelengths have been used to determine its physical properties (shape, dimensions, spatial orientation and albedo distribution).We acquired and analyzed adaptive optics (AO) J/H/K-band observations from Keck II and the Very Large Telescope taken during four Pallas oppositions between 2003 and 2007, with spatial resolution spanning 32-88 km (image scales 13-20 km/pixel). We improve our determination of the size, shape, and pole by a novel method that combines our AO data with 51 visual light-curves spanning 34 years of observations as well as archived occultation data.The shape model of Pallas derived here reproduces well both the projected shape of Pallas on the sky (average deviation of edge profile of 0.4 pixel) and light-curve behavior (average deviation of 0.019 mag) at all the epochs considered. We resolved the pole ambiguity and found the spin-vector coordinates to be within 5° of [longitude, latitude] = [30°, −16°] in the Ecliptic J2000.0 reference frame, indicating a high obliquity of about 84°, leading to high seasonal contrast. The best triaxial-ellipsoid fit returns ellipsoidal radii of , and . From the mass of Pallas determined by gravitational perturbation on other minor bodies , [Michalak, G., 2000. Astron. Astrophys. 360, 363-374], we derive a density of significantly different from the density of C-type (1) Ceres of [Carry, B., Dumas, C., Fulchignoni, M., Merline, W.J., Berthier, J., Hestroffer, D., Fusco, T., Tamblyn, P., 2008. Astron. Astrophys. 478 (4), 235-244]. Considering the spectral similarities of Pallas and Ceres at visible and near-infrared wavelengths, this may point to fundamental differences in the interior composition or structure of these two bodies.We define a planetocentric longitude system for Pallas, following IAU guidelines. We also present the first albedo maps of Pallas covering ∼80% of the surface in K-band. These maps reveal features with diameters in the 70-180 km range and an albedo contrast of about 6% with respect to the mean surface albedo.  相似文献   

6.
We observed (22) Kalliope and its companion Linus with the integral-field spectrograph OSIRIS, which is coupled to the adaptive optics system at the W.M. Keck 2 telescope on March 25, 2008. We present, for the first time, component-resolved spectra acquired simultaneously in each of the Zbb (1-1.18 μm), Jbb (1.18-1.42 μm), Hbb (1.47-1.80 μm), and Kbb (1.97-2.38 μm) bands. The spectra of the two bodies are remarkably similar and imply that both bodies were formed at the same time from the same material; such as via incomplete re-accretion after a major impact on the precursor body.  相似文献   

7.
The near infrared camera (NIRC) was used for a science demonstration run on the Keck telescope during 16–24 March 1993. The camera used a 256×256 InSb array manufactured by Santa Barbara Research Corporation. Observations were obtained using narrowband and broad band filters from 1 to 2.4 microns, and grisms with a spectral resolution of 0.6 percent in the J, H and K atmospheric windows. The instrument was fully background limited over the entire wavelength range. The sky background was quite low, reaching 14.3 mag/square arc sec in the broadband K s filter. The image quality of the camera + telescope was excellent, being seeing limited in the range 0.5–0.9.The science demonstration observations of the NIRC on the Keck Telescope included observations of the most distant galaxy known, 4C41.17 at a redshift z=3.8 and the most luminous object known, the IRAS source FSC10214+4724 at a redshift z=2.29. Observations of the radio galaxy address the problem of the alignment effect in high redshift radio galaxies as well as the environments of such systems. FSC10214+4724 appears to be a merging galaxy that is at least 5×108 years old.Based on observations obtained at the W.M.Keck Observatory, which is operated jointly by the California Institute of Technology and the University of CaliforniaThe W.M. Keck Observatory is operated as a scientific partnership between the California Institute of Technology and the University of California. It was made possible by the generous gift of the W.M. Keck foundation and the support of its president, Howard Keck.  相似文献   

8.
The European Space Agency Rosetta Spacecraft passed within 803 km of the main belt asteroid (2867) Steins on 5 September 2008. The Rosetta Spacecraft carries a number of scientific instruments including a millimeter and submillimeter radiometer and spectrometer. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.53 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients. A 4096 channel CTS (chirp transform spectrometer) having 180 MHz total bandwidth and ∼44 kHz resolution is also connected to the submillimeter receiver. We present the continuum observations of asteroid (2867) Steins obtained during the fly-by with the MIRO instrument. Spectroscopic data were also collected during the fly-by using the MIRO spectrometer fixed-tuned to rotational lines of several molecules. Results of the spectroscopic investigation will be the topic of a separate publication.Comparative thermal models and radiative transfer calculations for Steins are presented. Emissivities of Steins were determined to be 0.6-0.7 and 0.85-0.9 at wavelengths of 0.53 and 1.6 mm, respectively. The thermal inertia of Steins was estimated to be in the range 450-850 J/(m2 s0.5 K). Assuming that the emissivity of Steins is determined by the Fresnel reflection coefficients of the surface material, the area-averaged dielectric constant of the surface material is in the range 4-20. These values are rock-like, and are unlike the powdered-regolith surface of the Moon.  相似文献   

9.
Resonant orbits in the vicinity of asteroid 216 Kleopatra   总被引:3,自引:0,他引:3  
This investigation examines the resonant orbits in the vicinity of asteroid 216 Kleopatra using a precise gravitational model, with emphasis on their crucial role in determining the global orbital behaviors. Three-dimensional Monte Carlo simulations of test particle trajectories are launched to find the condition and probability distribution of resonance. It is revealed the resonant orbits are rich and concentrated in the near-field regime, which provides a short-term mechanism to clear the vicinal ejecta away from the asteroid. The unstable boundary predicted in our calculations is consistent with the observed mutual orbits of satellites S/2008 (216) 1 and S/2008 (216) 2. The probability distribution of resonance is considered as an indicator of the stability of vicinal orbits, and the results are identical to the previous analysis by Scheeres et al. (Icarus 121:67, 1996) for the stability of retrograde orbits around asteroid 4769 Castalia.  相似文献   

10.
We report on Adaptive Optics observations of the satellite of Asteroid 121 Hermione with the ESO-Paranal UT4 VLT and the Keck AO telescopes. The binary system, belonging to the Cybele family, was observed during two observing campaigns in January 2003 and January 2004 aiming to confirm its trajectory and accurately determine its orbital elements. A precessing Keplerian model was used to describe the motion of S/2002 (121) 1. We find that the satellite of Hermione revolves at a=768±11 km from the primary in P=2.582±0.002 days with a roughly circular and prograde orbit (e=0.001±0.001, i=3±2° w.r.t. equator primary). These extensive astrometric measurements enable us to determine the mass of Hermione to be 0.54±0.03×1019 kg and its pole solution (λ0=1.5°±2.00, β0=10°±2.0 in ecliptic J2000). Additional Keck AO observations taken close to the asteroid opposition in December 2003 give us direct insight into the structure of the primary which presents a bilobated shape. Since the angular resolution is limited to the theoretical angular resolution of the telescope (43 mas corresponding to a spatial resolution of 80 km), two shape models (called snowman and peanut) are proposed based on the images which were deconvolved with MISTRAL deconvolution process. Assuming a purely synchronous orbit and knowing the mass of the primary, the peanut shape composed of two separated components is quite unlikely. Additionally the J2 calculated from the analysis of the secondary orbit is not in agreement with the peanut model, but close to the snowman shape. The bulk density of the primary as derived from the observed size of the snowman shape is estimated to ρ∼1.8±0.2 g/cm3 implying a porosity ∼14% for this C-type asteroid, corresponding to a fractured asteroid. Considering the IRAS diameter, the density is lower (ρ=1.1±0.3 g/cm3) leading to a high porosity (p=30-60%) with a nominal value of p=48%, which indicates a completely loose rubble-pile structure for the primary. Further work is necessary to better constrain the size, shape, and then internal structure of Hermione's primary.  相似文献   

11.
We have extended our earlier work on space weathering of the youngest S-complex asteroid families to include results from asteroid clusters with ages <106 years and to newly identified asteroid pairs with ages <5 × 105 years. We have identified three S-complex asteroid clusters amongst the set of clusters with ages in the range 105-6 years—(1270) Datura, (21509) Lucascavin and (16598) 1992 YC2. The average color of the objects in these clusters agrees with the color predicted by the space weathering model of Willman et al. (Willman, M., Jedicke, R., Nesvorný, D., Moskovitz, N., Ivezi?, Z., Fevig, R. [2008]. Icarus 195, 663-673). SDSS five-filter photometry of the members of the very young asteroid pairs with ages <105 years was used to determine their taxonomic classification. Their types are consistent with the background population near each object. The average color of the S-complex pairs is PC1 = 0.49 ± 0.03, over 5σ redder than predicted by Willman et al. (Willman, M., Jedicke, R., Nesvorný, D., Moskovitz, N., Ivezi?, Z., Fevig, R. [2008]. Icarus 195, 663-673). This may indicate that the most likely pair formation mechanism is a gentle separation due to YORP spin-up leaving much of the aged and reddened surface undisturbed. If this is the case then our color measurement allows us to set an upper limit of ∼64% on the amount of surface disturbed in the separation process. Using pre-existing color data and our new results for the youngest S-complex asteroid clusters we have extended our space weather model to explicitly include the effects of regolith gardening and fit separate weathering and gardening characteristic time scales of τw = 960 ± 160 Myr and τg = 2000 ± 290 Myr respectively. The first principal component color for fresh S-complex material is PC1 = 0.37 ± 0.01 while the maximum amount of local reddening is ΔPC1 = 0.33 ± 0.06. Our first-ever determination of the gardening time is in stark contrast to our calculated gardening time of τg ∼ 270 Myr based on main belt impact rates and reasonable assumptions about crater and ejecta blanket sizes. A possible resolution for the discrepancy is through a ‘honeycomb’ mechanism in which the surface regolith structure absorbs small impactors without producing significant ejecta. This mechanism could also account for the paucity of small craters on (433) Eros.  相似文献   

12.
A mineralogical assessment of 3:1 Kirkwood Gap Asteroids (3760) Poutanen and (974) Lioba, has been carried out from spectral data obtained May 21, 2008 (974) and May 25, 2009 (3760) UT using the NASA Infrared Telescope Facility. Results indicate (3760) Poutanen as a spinel-bearing asteroid. The spinel contained within this asteroid appears to be embedded in calcium aluminum inclusions (CAIs) much like that of the CV3 chondrite Allende. The preservation of the CAIs implies a lack of igneous processing and places further constraints on the heating that occurred within the early Solar System. This analysis suggests (3760) Poutanen originated in the general formation zone of the CV3 meteorites, but in a sub-region depleted in iron-rich matrix material and enriched in pyroxene-bearing clasts. Analysis of (974) Lioba indicates it is an S(IV) asteroid with a surface silicate assemblage consisting of olivine and orthopyroxene, (Fs21(±5)Wo8(±3)), consistent with measured band centers, (0.96 ± 0.01 μm; 1.95 ± 0.02 μm), and the band area ratio (0.59 ± 0.15). The location, delivery efficiency ((24.5%) Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C. [1993]. Icarus 101, 174-187), calculated mineralogy, and BAR strongly suggest (974) Lioba is a plausible parent body for the LL- or L-ordinary chondrites.  相似文献   

13.
Near real time astrometric and photometric observations of the asteroid 2008 TC3, discovered 19 hours before it fell to Earth in the area of northern Sudan, were conducted on the night of October 6–7, 2008, using an automated telescope ZA-320M of the Pulkovo Observatory. In the interval of 4 h, 270 observations in the integral band of the telescope were performed, which was about one-third of all global observations of the asteroid. Based on the analysis of all cases, physical parameters of the asteroid were assessed. The estimates of the absolute magnitude of the asteroid (M V = 30.6 ± 0.4 μm), its size (4.8 ± 0.8 m), and weight (131 ± 5 t) were obtained. A frequency analysis of the observational series was conducted, which helped to detect the periodicity in the brightness variation of the asteroid. The elements of the heliocentric orbit of the asteroid were refined. The trajectory of the asteroid, taking into account the atmospheric drag and nonsphericity of the Earth, was simulated.  相似文献   

14.
We present observations of Uranus taken with the near-infrared camera NIRC2 on the 10-m W.M. Keck II telescope, the Wide Field Planetary Camera 2 (WFPC2) and the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) from July 2007 through November 2009. In this paper we focus on a bright southern feature, referred to as the “Berg.” In Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., Ahue, A.W., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M. [2009]. Icarus 203, 265-286), we reported that this feature, which oscillated between latitudes of −32° and −36° for several decades, suddenly started on a northward track in 2005. In this paper we show the complete record of observations of this feature’s track towards the equator, including its demise. After an initially slow linear drift, the feature’s drift rate accelerated at latitudes ∣θ∣ < 25°. By late 2009 the feature, very faint by then, was spotted at a latitude of −5° before disappearing from view. During its northward track, the feature’s morphology changed dramatically, and several small bright unresolved features were occasionally visible poleward of the main “streak.” These small features were sometimes visible at a wavelength of 2.2 μm, indicative that the clouds reached altitudes of ∼0.6 bar. The main part of the Berg, which is generally a long sometimes multipart streak, is estimated to be much deeper in the atmosphere, near 3.5 bars in 2004, but rising to 1.8-2.5 bars in 2007 after it began its northward drift. Through comparisons with Neptune’s Great Dark Spot and simulations of the latter, we discuss why the Berg may be tied to a vortex, an anticyclone deeper in the atmosphere that is visible only through orographic companion clouds.  相似文献   

15.
On 5 September 2008, the Rosetta spacecraft encountered the asteroid 2867 Steins on its way to the comet 67P/Churyumov-Gerasimenko. This was the first of two planned asteroid fly-bys performed by the probe, the second fly-by being with the much larger asteroid 21 Lutetia in July 2010. The VIRTIS imaging spectrometer (IFOV 0.250 mrad, overall spectral range 0.25-5.1 μm) onboard Rosetta acquired data of Steins already before the closest approach phase, when the target was spatially unresolved, in order to obtain a light curve of the asteroid in the infrared spectral range extending up to 5 μm, that was never explored before. The VIRTIS light curve campaign started at 11:30 UTC onboard time, when the spacecraft was about 221,377 km away from the target, and ended at 17:58 UTC, at a distance of 20,741 km away from Steins. During this timeframe, the solar phase angle of the asteroid was roughly constant, ranging from 38.2° to 36.3°.Assuming the most recent value derived for the rotational period of Steins (Lamy et al., 2008), the VIRTIS observations covered slightly more than one rotation of the asteroid. In this interval, VIRTIS collected 8 hyperspectral cubes where Steins was captured 119 times, both in the visual and in the infrared range. Given the low signal and the unresolved appearance of the source, for which the instrument was not designed, only a small subset of wavelengths turned out to be suitable to sample the light curve. Nevertheless, in both the VIS and NIR ranges we find a similar trend, with two different maxima and minima during one rotational period, and amplitudes consistent with the results in the visual range obtained in previous works, including the data set acquired by the OSIRIS camera onboard Rosetta. We also report the presence of a new broad feature centered at approximately 0.81-0.82 μm, which is seen in the visual data throughout the rotation of the asteroid.  相似文献   

16.
We observed near-Earth asteroid (NEA) 2100 Ra-Shalom over a six-year period, obtaining rotationally resolved spectra in the visible, near-infrared, thermal-infrared, and radar wavelengths. We find that Ra-Shalom has an effective diameter of Deff=2.3±0.2 km, rotation period P=19.793±0.001 h, visual albedo pv=0.13±0.03, radar albedo , and polarization ratio μc=0.25±0.04. We used our radar observations to generate a three-dimensional shape model which shows several structural features of interest. Based on our thermal observations, Ra-Shalom has a high thermal inertia of ∼103 J m−2 s−0.5 K−1, consistent with a coarse or rocky surface and the inferences of others [Harris, A.W., Davies, J.K., Green, S.F., 1998. Icarus 135, 441-450; Delbo, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. Our spectral data indicate that Ra-Shalom is a K-class asteroid and we find excellent agreement between our spectra and laboratory spectra of the CV3 meteorite Grosnaja. Our spectra show rotation-dependent variations consistent with global variations in grain size. Our radar observations show rotation-dependent variations in radar albedo consistent with global variations in the thickness of a relatively thin regolith.  相似文献   

17.
In 2007, the asteroid Kalliope will reach one of its annual equinoxes. As a consequence, its small satellite Linus orbiting in the equatorial plane will undergo a season of mutual eclipses and occultations very similar to the one that the Galilean satellites undergo every 6 years. This paper is aimed at preparing a campaign of observations of these mutual events occurring from February to May 2007. This opportunity occurs only under favorable geometric conditions when the Sun and/or the Earth are close to the orbital plane of the system. This is the first international campaign devoted to the observation of photometric events within an asynchronous asteroidal binary system. We took advantage of a reliable orbit solution of Linus to predict a series of 24 mutual eclipses and 12 mutual occultations observable in the spring of 2007. Thanks to the brightness of Kalliope (mv?11), these observations are easy to perform even with a small telescope. Anomalous attenuation events could be observed lasting for about 1-3 h with amplitude up to 0.09 mag. The attenuations are of two distinct types that can clearly be identified as primary and secondary eclipses similar to those that have been previously observed in other minor planet binary systems [Pravec, P., Scheirich, P., Kusnirák, P., Sarounová, L., Mottola, S., Hahn, G., Brown, P., Esquerdo, G., Kaiser, N., Krzeminski, Z., Pray, D.P., Warner, B.D., Harris, A.W., Nolan, M.C., Howell, E.S., Benner, L.A.M., Margot, J.-L., Galád, A., Holliday, W., Hicks, M.D., Krugly, Yu.N., Tholen, D., Whiteley, R., Marchis, F., Degraff, D.R., Grauer, A., Larson, S., Velichko, F.P., Cooney, W.R., Stephens, R., Zhu, J., Kirsch, K., Dyvig, R., Snyder, L., Reddy, V., Moore, S., Gajdos, S., Világi, J., Masi, G., Higgins, D., Funkhouser, G., Knight, B., Slivan, S., Behrend, R., Grenon, M., Burki, G., Roy, R., Demeautis, C., Matter, D., Waelchli, N., Revaz, Y., Klotz, A., Rieugné, M., Thierry, P., Cotrez, V., Brunetto, L., Kober, G., 2006. Photometric survey of binary near-Earth asteroids. Icarus 181, 63-93]. With these favorable circumstances, such photometric observations will provide us tight constraints regarding physical properties of Linus such as the size, shape and synodic spin period.  相似文献   

18.
The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko (Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.  相似文献   

19.
We present adaptive optics (AO) observations of Io taken with the W.M. Keck II telescope on 18 December 2001 (UT) before the satellite went into eclipse, and while it was in Jupiter's shadow. Making these kind of Io-in-eclipse observations, as well as the associated data reduction and analysis are challenging; hence one focus of the paper is to explain the methods and tools used for these data sets. For the sunlit images Io itself was used as the wavefront reference source, while nearby Ganymede was used as reference ‘star’ when Io was in eclipse. Observations were obtained in K′-, L′-, and M-bands. The sunlit images have been deconvolved using MISTRAL. The Io-in-eclipse data were deconvolved with IDAC and MISTRAL. The former gives better results, both in absolute photometry and in matching the original images. We determined the flux densities of the hot spots from the original Io-in-eclipse data with StarFinder, as well as from the deconvolved images by integrating the intensity over the relevant areas. We determined the highly anisoplanatic PSF via a FFT method from the original data, and used this in StarFinder and as a starting PSF for IDAC and MISTRAL. We derived temperatures and areal coverage of all 19 spots detected in both K′- and L′-band images of Io-in-eclipse. We also determined temperatures and areal coverage of the hot spots visible on the L′- and M-band images of sunlit Io. Most volcanoes contain a compact hot ‘core’ (?10 km2 at 600-800 K) within a larger area at lower temperatures (e.g., ∼102-104 km2 at 300-500 K). The total heat flow contributed by these active volcanoes is 0.2 W m−2, ∼8% of the average global heat flow measured at 5-20 μm by Veeder et al. [J. Geophys. Res. 99 (1994) 17095].  相似文献   

20.
We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury’s sodium exosphere. The distribution of sodium in Mercury’s exosphere during the period January 12-15, 2008, was mapped using the McMath-Pierce solar telescope with the 5″ × 5″ image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury’s anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD, but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization. We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 × 106 cm−2 s−1. The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号