首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical milling of alumina in order to reduce grain sizes to ≤100 nm has been proposed as a means of reducing sintering temperatures and improving pressureless sintered density, particularly as a means of allowing co-firing with metallic components for biomedical implants. There is a persistent problem with contamination from the milling media, usually hardened steel which can be only partially alleviated by acid leaching. We have explored the use of alternative milling media with a view to reducing the levels of contamination. Alumina powders were milled with hardened steel, tungsten carbide, alumina and zirconia milling media under identical conditions of ball mass:powder mass ratio 10:1 and target milling times of 32 h. All of the milling media were found to cause unacceptable levels of contamination. Zirconia media gave the lowest contamination (3–4%) and in some circumstances, the addition of a small amount of zirconia may lead to increased toughness without loss of bio-compatibility.  相似文献   

2.
The objective of this study is to assess the feasibility of solvent extraction (SE) for partial binder removal in the context of polymer co-extrusion with a thermoplastic binder component. Polymer co-extrusion is able to produce multilayered, functionally graded and/or textured structures in an efficient manufacturing process, but requires a polymer binder system with suitable flow characteristics. Traditionally, the binder is removed by thermal debinding (TD), which, however, is prone to form cracks or blisters, both of which are attributed to a lack of initial pore space that allows pyrolysis products to escape. The primary focus of this work is to demonstrate that a binder system with a high soluble binder content is suitable for conventional polymer co-extrusion and to document that a two-step binder removal process involving both SE and TD eliminates debinding defects. The overall fabrication process is documented for the extrusion of solid ceramic rods and co-extrusion of tubes, where alumina powder was batched with polyethylene butyl acrylate (PEBA) as backbone polymer and polyethylene glycol (PEG) as water soluble binder. SE for specimen with varying PEBA:PEG ratios was tested in water at three different temperatures for various times. The 1:1 mixture showed a PEG removal up to 80 wt.% of the original PEG content after 6 h extraction; after subsequent thermal debinding, rods and tubes sintered successfully without defects, demonstrating the viability of the process.  相似文献   

3.
Well-dispersed nano-crystalline transition alumina suspensions were mixed with yttrium chloride aqueous solutions, with the aim of producing Al2O3-Y3Al5O12 (YAG) composite powders. DTA analysis allowed to highlight the role of yttrium on the α-phase crystallization path. Systematic XRD and HRTEM analyses were carried out in parallel on powders calcined in a wide temperature range (600-1300 °C) in order to follow phase and microstructural evolution. A thin, homogeneous yttrium-rich layer was yielded on the alumina particles surface; yttrium diffusion into the alumina matrix was negligible up to 1150 °C whereas, starting from 1200 °C, aggregates of partially sintered alumina particles appeared, stuck together by yttrium-rich thin films. Moreover, in the yttrium-richer zones, such as alumina grain boundaries and triple joints, yttrium-aluminates precipitated at alumina particles surface. Finally, at 1300 °C, alumina-YAG composite powders were produced, in which YAG was homogenously distributed among the alumina grains.  相似文献   

4.
Micro powder injection moulding of alumina micro-channel part   总被引:1,自引:0,他引:1  
A feedstock consisting of submicron alumina powder and a formulated binder, was developed to fabricate alumina micro-channel part by micro powder injection moulding. During small scale-mixing, the mixing torques of feedstocks with four different powder loadings were used to establish a suitable powder loading. The thermal and rheological properties of the selected feedstock were examined and used to establish conditions for large scale mixing, debinding and injection moulding. The micro-channel parts were pressureless sintered at different temperatures. The results showed that the moulded, debound and sintered micro-channel parts had good shape retention. The dimensions of the micro-channel part changed with the different processing steps. High densification of the micro-channel parts was achieved at sintering temperatures of 1350 °C and above. Above 1350 °C, the grain grew significantly with increasing the sintering temperatures and thus it led to a decrease in the microhardness.  相似文献   

5.
The wear behaviour of a monolithic alumina and an alumina-aluminium titanate laminated structure was studied. The laminate, containing surface fine grained alumina layers and internal composite layers with 10 vol.% of aluminium titanate, showed relatively low (≅20 MPa) compressive residual stresses at the surface. Interfaces between layers were constituted by large alumina grains (up to ≅50 μm) that promoted toughening due to crack deflection and branching. Wear tests were performed on square specimens (30 mm × 30 mm × 6 mm) using the pin-on-disc method. The laminates showed higher wear resistance than the monolithic alumina. The analysis of the results together with SEM-EDX observations was performed to identify possible wear mechanisms. The wear resistance improvements are discussed in terms of the residual stresses in the laminate and the properties provided by the special microstructure of the interfaces.  相似文献   

6.
Alumina-coated tetragonal zirconia stabilised with 3 mol% of Y2O3 (YTZP) specimens (30 mm × 30 mm × 6 mm) have been obtained by dipping of pre-sintered YTZP compacts in alumina suspensions and subsequent sintering. The coated specimens present hardness values and a wear resistance similar to those of reference dense alumina specimens and significantly higher than those of the YTZP substrates.  相似文献   

7.
Al2O3-5 vol.% Y3Al5O12 (YAG) composite powders have been prepared by surface doping of α-alumina powders by an yttrium chloride aqueous solution. Two commercial, one submicron-sized, the other ultra-fine, alumina powders were compared as matrix materials. YAG phase was yielded by an in situ reaction promoted by the subsequent thermal treatment of the doped powders. In particular, a flash soaking into a tubular furnace kept at a fixed temperature in the range 1050-1150 °C was employed, for inducing the crystallization of yttrium-aluminates on the alumina particles surface, but avoiding a relevant crystallites growth. After that, aqueous suspensions of the calcined powders were dispersed by ball-milling and cast into porous moulds or simply dried in a oven. Slip cast green bodies were densified by pressure-less sintering, while powdered samples were consolidated by hot pressing or spark plasma sintering. The low- and high-temperature mechanical performances of the sintered materials were investigated and related to monolithic aluminas behaviour as well as to the composites microstructures. It is shown that the hot-pressed and spark plasma sintered composites present a significantly lower creep rate as compared to reference, monolithic alumina samples.  相似文献   

8.
Monoclinic lithium vanadium phosphate, Li3V2(PO4)3, has been successfully synthesized using LiF as lithium source. The one-step reaction with stoichiometric composition and relative lower sintering temperature (700 °C) has been used in our experimental processes. The solid-state reaction mechanism using LiF as lithium precursor has been studied by X-ray diffraction and Fourier transform infrared spectra. The Rietveld refinement results show that in our product sintered at 700 °C no impurity phases of VPO4, Li5V(PO4)2F2, or LiVPO4F can be detected. The solid-state reaction using Li2CO3 as Li-precursor has also been carried out for comparison. X-ray diffraction patterns indicate that impurities as Li3PO4 can be found in the product using Li2CO3 as Li-precursor unless the sintering temperatures are higher than 850 °C. An abrupt particle growth (about 2 μm) has also been observed by scanning electron microscope for the samples sintered at higher temperatures, which can result in a poor cycle performance. The product obtained using LiF as Li-precursor with the uniform flake-like particles and smaller particle size (about 300 nm) exhibits the better performance. At the 50th cycle, the reversible specific capacities for Li3V2(PO4)3 measured between 3 and 4.8 V at 1C rate are found to approach 147.1 mAh/g (93.8% of initial capacity). The specific capacity of 123.6 mAh/g can even be hold between 3 and 4.8 V at 5C rate.  相似文献   

9.
Al2O3 ceramics were fabricated without additives under high pressure (2-7 GPa) at different temperatures (600-1200 °C) using nanocrystalline alumina powder with metastable γ-Al2O3 phase as the starting material.It was shown that high pressure increases the nucleation rate while reducing the growth rate of the transformed α phase so that its grain size decreases and nano-scale grains in the sintered structure can be achieved.On the other hand the sintered samples at 7 GPa and high temperature (1000 °C) have shown micron-scale large grain sizes compared to those sintered at lower pressures, for the same temperature and sintering time. This could be attributed to the higher input energy in the system at high pressure and high temperature conditions, thereby reaching the final stage in sintering more quickly.In this work, the best combination of grain size (∼200 nm) and density (98.0% TD) was obtained under the sintering condition of 1000 °C at 7 GPa with a holding time of 1 min.Thus for high pressure/high temperature conditions, the sintering time should be reduced to prevent grain growth.  相似文献   

10.
Three-phase composites in the system Al2O3-YAG-ZrO2 (AYZ) were produced by doping the surface of commercial alumina nanopowders with inorganic precursors of the second phases. Materials with three different compositions were prepared, in which 5, 20 and 33 vol.% of each second phase were respectively present. Pure crystalline phases were obtained in the final composites, as assessed by X-ray diffraction. Green bodies were produced by slip casting and uniaxial pressing. Subsequent free sintering led to full densification and to highly homogeneous microstructures, in terms of grain size and second phase distribution. A progressive refinement of the alumina matrix grain size was achieved by increasing the second phase content, varying from micro/nano-composites to ultra-fine structures, with a mean grain size of about 500 nm for all the phases. The three materials presented high Vickers hardness values, as a results of the high final density and ultra-fine, homogeneous microstructures.  相似文献   

11.
Solid particle erosion tests have been conducted on three different alumina-based refractories at elevated temperatures up to 1400 °C, using sharp SiC particles between 325 and 830 μm in diameter. The impact speed is 50 m/s and the impact angle is varied between 30° and 90°. The objective of this study is to ascertain the effects of temperature and impact angle on the erosion resistance of alumina refractories. The experimental results reveal that the alumina-based refractories, in general, exhibit increasing erosion resistance with increasing temperature and decreasing impact angle, with the minimum erosion rate at 1200 °C and 30° impact angle. Chrome corundum refractory brick is the most resistant to vertical erosion, due to its highest alumina content, and associated hardness and density, as well as strongly bonded aggregate and binder phase. The primary material removal mechanisms are fracture and chipping of binder phase and aggregate, as well as aggregate pull-out.  相似文献   

12.
The stability of alumina suspensions in the presence of Tiron was studied and discussed in the light of surface properties of alumina powder used, ionization chemistry of Tiron, and sedimentation behavior of the suspensions. The point of zero charge of alumina with and without addition of Tiron was determined using a batch equilibration method. The sedimentation of the suspensions was evaluated via screen sedimentation tests as a function of pH and Tiron concentration. The dissociation constant, pKa1, of the hydroxyl groups of the Tiron molecule was determined by potentiometric titration carried out in water and KNO3 as a background electrolyte. Tiron was shown to adsorb specifically onto the alumina surface in the examined pH range 4–10, but impart stability to the suspensions only at pH ≥ 6.  相似文献   

13.
Nanocrystalline Al2O3 powders containing different amounts of MgO (0.1–5.0 mol%) or added boehmite (AlOOH) have been synthesized by combustion synthesis from aluminium nitrate and magnesium nitrate, using urea or sucrose as fuels. The as synthesized alumina powders were deagglomerated, compacted by dry pressing and sintered at 1625 °C for 2 h. For comparison purposes, a commercial high purity α-Al2O3 powder (ACC) was also processed following the same route. The sintered materials were characterized for bulk density (BD), apparent porosity (AP), and water absorption (WA) capacity, microstructure using SEM, and XRD phase composition. In comparison to boehmite, the MgO had a considerable effect on the densification behaviour of combustion-synthesized powder.  相似文献   

14.
The efficiency of colloidal silica as a binder agent for castable matrix suspension in the presence of different setting agents and curing temperatures was evaluated. The tests were carried out trough rheometric techniques according to a systemic approach specifically developed for ceramic systems (oscillatory and normal force tests). Colloidal silica performed well as a binder agent for refractory suspensions when a suitable additive was selected. Among the additives analyzed, magnesium oxide was the most suitable for the evaluated systems. MgO addition in the range of 0.3–0.6 wt% and curing temperature of 25 °C were the suggested parameters for alumina and microsilica systems.  相似文献   

15.
We herein propose a new technique for producing highly aligned porous ceramics by extruding a frozen ceramic/camphene body. To accomplish this, an alumina/camphene slurry with an initial alumina content of 10 vol% was first frozen unidirectionally in a 20 mm × 20 mm mold and extruded through a reduction die with a cross-section of 5 mm × 5 mm at room-temperature. This simple process enabled the formation of porous alumina ceramics with highly aligned pores as a replica of the camphene dendrites with a preferential orientation parallel to the extrusion direction. The sample showed much higher compressive strength of 280 ± 80 kPa with a porosity of 83 vol% when tested parallel to the direction of pore alignment. In addition, these materials could be used as a valuable framework for the production of ceramic/epoxy composites, particularly with a lamellar structure, which would result in a remarkable increase in mechanical properties.  相似文献   

16.
Ultrafine α-Al2O3 powders were prepared by a gel combustion method and the agglomeration characteristic of the resultant powders was studied. A variety of fine crystallite α-Al2O3 powders with different agglomeration structures could be obtained by altering the citrate-to-nitrate ratio γ and calcining the precursors at 1050 °C for 2 h. All the powders were of nearly equivalent crystallite size (60–80 nm) except for the P1 powder (113 nm) from the gel with γ = 0.033. The primary crystallites of the obtained α-Al2O3 powders were formed into large secondary particles with different degree of agglomeration. Except for the powder P1, the mean particle sizes from specific surface area and particle size distribution measurement increase with increasing citrate-to-nitrate ratio in the fuel-lean condition and decrease in the fuel-rich condition. Densities of alumina ceramics from powders P4 and P5 sintered at different temperatures were relatively low due to the wide particle size distribution.  相似文献   

17.
A new aqueous alumina gelcasting system using hexamethylenediamine (HMDA) and paraformaldehyde monomers has been studied. The 500 vol% aqueous alumina slurries ‘A’ and ‘B’ containing paraformaldehyde and HMDA, respectively, undergo gelation after thorough mixing of the two due to the polymerization of HMDA and formaldehyde. The gelation time of the slurries cast in a mold is in the range of 7–2.4 min at HMDA to formaldehyde mole ratio in the range of 1.1–1.5. The faster reaction between HMDA and formaldehyde prevents the formaldehyde emission during the processing. The minimum HMDA to formaldehyde mole ratio required for the formation of a mechanically stable gel is 1.1. The compressive strengths and Young's modulus of the wet and dry alumina bodies increased with an increase in HMDA to formaldehyde mole ratio. Though the wet gelcast alumina bodies had low compressive strength (11.2–88.7 kPa) and Young's modulus (0.17–5.9 MPa) the dried ones showed high strength (6–11.7 MPa) and Young's modulus (209–364 MPa). The binder removal by slow heating to a temperature below 500 °C followed by sintering at 1600 °C produced alumina ceramics with ~97% of theoretical density.  相似文献   

18.
Direct coagulation casting (DCC) of concentrated aqueous alumina slurries prepared using ammonium poly(acrylate) dispersant has been studied using MgO as coagulating agent. Addition of small amounts of MgO increased the viscosity of the concentrated alumina slurries with time and finally transformed it in to a stiff gel. Sufficient working time for degassing and casting could be achieved by cooling the slurries to a temperature of ∼5 °C after proper homogenization after the addition of MgO. The DCC slip with alumina loading in the range of 50–55 vol% showed relatively low viscosity (0.12–0.36 Pa s at shear rate of 93 s−1) and yield stress (1.96–10.56 Pa) values. The wet coagulated bodies prepared from slurries of alumina loading in the range of 50–55 vol% had enough compressive strength (45–211 kPa) for handling during mould removal and further drying. The coagulated bodies prepared from slurries of alumina loading in the range of 50–55 vol% showed linear shrinkage in the range of 4.8–2.3 during drying and 17.1–16.2 during sintering respectively. Near-net-shape alumina components with density >98% TD could be prepared by the DCC process.  相似文献   

19.
Synthesis of Zn3Nb2O8 ceramics using a simple and effective reaction-sintering process was investigated. The mixture of ZnO and Nb2O5 was pressed and sintered directly without any prior calcination. Single-phase Zn3Nb2O8 ceramics could be obtained. Density of these ceramics increased with soaking time and sintering temperature. A maximum density 5.72 g/cm3 (99.7% of the theoretical density) was found for pellets sintered at 1170 °C for 2 h. Pores were not found and grain sizes >20 μm were observed in pellets sintered at 1170 °C. Abnormal grain growth occurred and grains >50 μm could be seen in Zn3Nb2O8 ceramics sintered at 1200 °C for 2 h and 1200 °C for 4 h. Reaction-sintering process is then a simple and effective method to produce Zn3Nb2O8 ceramics for applications in microwave dielectric resonators.  相似文献   

20.
Alumina/silicon carbide composites have been fabricated by a new technique involving the in situ synthesis of nano-sized SiC particles. A mixture of alumina powder and silicon carbide precursors was prepared in an aqueous suspension. Green bodies were formed by cold isostatic pressing of granules obtained by freeze granulation, and pressureless sintered at 1750 °C for 4 h in an argon atmosphere. Mullite (10–20 vol%) formed in addition to SiC during sintering. The SiC particles were located predominantly to the interior of the mullite and alumina matrix grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号