首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
This study explored the expression of several miRNAs reported to be deregulated in age-related macular degeneration (AMD). Total RNA was isolated from sera from patients with dry AMD (n = 12), wet AMD (n = 14), and controls (n = 10). Forty-two previously investigated miRNAs were selected based on published data and their role in AMD pathogenesis, such as angiogenic and inflammatory effects, and were co-analysed using a miRCURY LNA miRNA SYBR® Green PCR kit via quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully validated the differentially regulated miRNAs in serum from AMD patients versus controls. Eight miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-23a-3p, hsa-miR-301a-3p, hsa-miR-361-5p, hsa-miR-27b-3p, hsa-miR-874-3p, hsa-miR-19b-1-5p) showed higher expression in the serum of dry AMD patients than wet AMD patients and compared with healthy controls. Increased quantities of certain miRNAs in the serum of AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers and might be used as future AMD treatment targets. The discovery of significant serum miRNA biomarkers in AMD patients would provide an easy screening tool for at-risk populations.  相似文献   

2.
New biomarkers are needed to further stratify the risk of malignancy in intraductal papillary mucinous neoplasm (IPMN). Although microRNAs (miRNAs) are expected to be stable biomarkers, they can vary owing to a lack of definite internal controls. To identify universal biomarkers for invasive IPMN, we performed miRNA sequencing using tumor-normal paired samples. A total of 19 resected tissues and 13 pancreatic juice samples from 32 IPMN patients were analyzed for miRNA expression by next-generation sequencing with a two-step normalization of miRNA sequence data. The miRNAs involved in IPMN associated with invasive carcinoma were identified from this tissue analysis and further verified with the pancreatic juice samples. From the tumor-normal paired tissue analysis of the expression levels of 2792 miRNAs, 20 upregulated and 17 downregulated miRNAs were identified. In IPMN associated with invasive carcinoma (INV), miR-10a-5p and miR-221-3p were upregulated and miR-148a-3p was downregulated when compared with noninvasive IPMN. When these findings were further validated with pancreatic juice samples, miR-10a-5p was found to be elevated in INV (p = 0.002). Therefore, three differentially expressed miRNAs were identified in tissues with INV, and the expression of miR-10a-5p was also elevated in pancreatic juice samples with INV. MiR-10a-5p is a promising additional biomarker for invasive IPMN.  相似文献   

3.
Noninvasive, affordable circulating biomarkers for difficult-to-diagnose mild traumatic brain injury (mTBI) are an unmet medical need. Although blood microRNA (miRNA) levels are reportedly altered after traumatic brain injury (TBI), their diagnostic potential for mTBI remains inconclusive. We hypothesized that acutely altered plasma miRNAs could serve as diagnostic biomarkers both in the lateral fluid percussion injury (FPI) model and clinical mTBI. We performed plasma small RNA-sequencing from adult male Sprague–Dawley rats (n = 31) at 2 days post-TBI, followed by polymerase chain reaction (PCR)-based validation of selected candidates. miR-9a-3p, miR-136-3p, and miR-434-3p were identified as the most promising candidates at 2 days after lateral FPI. Digital droplet PCR (ddPCR) revealed 4.2-, 2.8-, and 4.6-fold elevations in miR-9a-3p, miR-136-3p, and miR-434-3p levels (p < 0.01 for all), respectively, distinguishing rats with mTBI from naïve rats with 100% sensitivity and specificity. DdPCR further identified a subpopulation of mTBI patients with plasma miR-9-3p (n = 7/15) and miR-136-3p (n = 5/15) levels higher than one standard deviation above the control mean at <2 days postinjury. In sTBI patients, plasma miR-9-3p levels were 6.5- and 9.2-fold in comparison to the mTBI and control groups, respectively. Thus, plasma miR-9-3p and miR-136-3p were identified as promising biomarker candidates for mTBI requiring further evaluation in a larger patient population.  相似文献   

4.
Liver fibrosis is characterized by the accumulation of extracellular matrix (ECM) resulting in the formation of fibrous scars. In the clinic, liver biopsies are the standard diagnostic method despite the potential for clinical complications. miRNAs are single-stranded, non-coding RNAs that can be detected in tissues, body fluids and cultured cells. The regulation of many miRNAs has been linked to tissue damage, including liver fibrosis in patients, resulting in aberrant miRNA expression/release. Experimental evidence also suggests that miRNAs are regulated in a similar manner in vitro and could thus serve as translational in vitro–in vivo biomarkers. In this work, we set out to identify and characterize biomarkers for liver fibrosis that could be used in vitro and clinically for research and diagnostic purposes. We focused on miRNAs released from hepatic 3D cultures exposed to methotrexate (MTX), which causes fibrosis, and acetaminophen (APAP), an acute hepatotoxicant with no clinically relevant association to liver fibrosis. Using a 3D in vitro model, we corroborated compound-specific responses as we show MTX induced a fibrotic response, and APAP did not. Performing miRNA-seq of cell culture supernatants, we identified potential miRNA biomarkers (miR-199a-5p, miR-214-3p, niRNA-125a-5p and miR-99b-5p) that were associated with a fibrotic phenotype and not with hepatocellular damage alone. Moreover, transfection of HSC with miR-199a-5p led to decreased expression of caveolin-1 and increased α-SMA expression, suggesting its role in HSC activation. In conclusion, we propose that extracellular miR-214-3p, miR-99b-5p, miR-125a-5p and specifically miR-199a-5p could contribute towards a panel of miRNAs for identifying liver fibrosis and that miR-199a-5p, miR-214-3p and miR-99b-5p are promoters of HSC activation.  相似文献   

5.
Renal cell carcinoma (RCC) is the third most frequent urinary malignancy and one of the most lethal. Current diagnostic and follow-up techniques are harmful and unspecific in low-grade tumors. Novel minimally invasive markers such as urine microRNAs (miRNAs) are under study. However, discrepancies arise among studies in part due to lack of consent regarding normalization. We aimed to identify the best miRNA normalizer for RCC studies performed in urine samples together with a miRNA profile with diagnostic value and another for follow-up. We evaluated the performance of 120 candidate miRNAs in the urine of 16 RCC patients and 16 healthy controls by RT-qPCR followed by a stability analysis with RefFinder. In this screening stage, miR-20a-5p arose as the most stably expressed miRNA in RCC and controls, with a good expression level. Its stability was validated in an independent cohort of 51 RCC patients and 32 controls. Using miR-20a-5p as normalizer, we adjusted and validated a diagnostic model for RCC with three miRNAs (miR-200a-3p, miR-34a-5p and miR-365a-3p) (AUC = 0.65; Confidence Interval 95% [0.51, 0.79], p = 0.043). let-7d-5p and miR-205-5p were also upregulated in patients compared to controls. Comparing RCC samples before surgery and fourteen weeks after, we identified let-7d-5p, miR-152-3p, miR-30c-5p, miR-362-3p and miR-30e-3p as potential follow-up profile for RCC. We identified validated targets of most miRNAs in the renal cell carcinoma pathway. This is the first study that identifies a robust normalizer for urine RCC miRNA studies, miR-20a-5p, which may allow the comparison of future studies among laboratories. Once confirmed in a larger independent cohort, the miRNAs profiles identified may improve the non-invasive diagnosis and follow-up of RCC.  相似文献   

6.
The aim of this study was to examine whether salivary exosomal miRNAs could be identified as aging biomarkers. Fifteen young healthy volunteers (median age, 21.0 years) and 13 old individuals (median age, 66.0 years) were recruited. Unstimulated whole saliva was collected, salivary exosomes were isolated, and total RNA was extracted. In a microarray, 242 miRNAs were commonly detected in these two mixed samples. Based on the cut-off values of 2- or 0.5-fold changes (FC) and regulatory power for aging process, six candidate miRNAs (miR-24-3p, miR-371a-5p, miR-3175, miR-3162-5p, miR-671-5p, and miR-4667-5p) were selected. After comparing each total RNA obtained by the 15 young and 13 old individuals to validate the FC values using quantitative real-time PCR, miR-24-3p was identified as a novel candidate aging biomarker. This pilot study suggested that salivary exosomal miRNAs could be identified as candidate aging biomarkers. To confirm whether miR-24-3p in salivary exosomes are suitable biomarkers of aging, further validation research is required.  相似文献   

7.
Biomarkers for predicting individual response to radiation and for dose verification are needed to improve radiotherapy. A biomarker should optimally show signal fidelity, meaning that its level is stable and proportional to the absorbed dose. miRNA levels in human blood serum were suggested as promising biomarkers. The aim of the present investigation was to test the miRNA biomarker in leukocytes of breast cancer patients undergoing external beam radiotherapy. Leukocytes were isolated from blood samples collected prior to exposure (control); on the day when a total dose of 2 Gy, 10 Gy, or 20 Gy was reached; and one month after therapy ended (46–50 Gy in total). RNA sequencing was performed and univariate analysis was used to analyse the effect of the radiation dose on the expression of single miRNAs. To check if combinations of miRNAs can predict absorbed dose, a multinomial logistic regression model was built using a training set from eight patients (representing 40 samples) and a validation set with samples from the remaining eight patients (15 samples). Finally, Broadside, an explorative interaction mining tool, was used to extract sets of interacting miRNAs. The most prominently increased miRNA was miR-744-5p, followed by miR-4461, miR-34a-5p, miR-6513-5p, miR-1246, and miR-454-3p. Decreased miRNAs were miR-3065-3p, miR-103a-2-5p, miR-30b-3p, and miR-5690. Generally, most miRNAs showed a relatively strong inter-individual variability and different temporal patterns over the course of radiotherapy. In conclusion, miR-744-5p shows promise as a stable miRNA marker, but most tested miRNAs displayed individual signal variability which, at least in this setting, may exclude them as sensitive biomarkers of radiation response.  相似文献   

8.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease for which there are currently no validated outcome measures for assessing therapeutic intervention efficacy. The aim of this study was to identify a plasma and/or serum microRNA (miRNA) biomarker panel for MNGIE. Sixty-five patients and 65 age and sex matched healthy controls were recruited and assigned to one of four study phases: (i) discovery for sample size determination; (ii) candidate screening; (iii) candidate validation; and (iv) verifying the performance of the validated miRNA panel in four patients treated with erythrocyte-encapsulated thymidine phosphorylase (EE-TP), an enzyme replacement under development for MNGIE. Quantitative PCR (qPCR) was used to profile miRNAs in serum and/or plasma samples collected for the discovery, validation and performance phases, and next generation sequencing (NGS) analysis was applied to serum samples assigned to the candidate screening phase. Forty-one differentially expressed candidate miRNAs were identified in the sera of patients (p < 0.05, log2 fold change > 1). The validation cohort revealed that of those, 27 miRNAs were upregulated in plasma and three miRNAs were upregulated in sera (p < 0.05). Through binary logistic regression analyses, five plasma miRNAs (miR-192-5p, miR-193a-5p, miR-194-5p, miR-215-5p and miR-34a-5p) and three serum miRNAs (miR-192-5p, miR-194-5p and miR-34a-5p) were shown to robustly distinguish MNGIE from healthy controls. Reduced longitudinal miRNA expression of miR-34a-5p was observed in all four patients treated with EE-TP and coincided with biochemical and clinical improvements. We recommend the inclusion of the plasma exploratory miRNA biomarker panel in future clinical trials of investigational therapies for MNGIE; it may have prognostic value for assessing clinical status.  相似文献   

9.
Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted; and through a bioinformatic approach the common miRNAs target Specificity proteins (Sp1) were identified. Sp1 regulates the expression of gap junction protein Connexin43 (Cx43), which in OA drives the modification of (i) osteoblasts and chondrocytes genes expression, (ii) joint inflammation cytokines releases and (iii) cell functions. Concerning this, thanks to gain and loss of function studies, the possible role of Sp1 as a modulator of CX43 expression through miR-31-5p and miR-33a-5p action was also evaluated. Finally, we hypothesize that both miRNAs cooperate to modulate the expression of SP1 in osteoblasts and chondrocytes and interfering, consequently, with CX43 expression, and they might be further investigated as new possible biomarkers for OA.  相似文献   

10.
Lung cancer remains the leading cause of cancer related mortality worldwide. We aimed to test whether a simple blood biomarker (extracellular vesicle miRNAs) can discriminate between cases with and without lung cancer. Methods: plasma extracellular vesicles (EVs) were isolated from four cohorts (n = 20 in each): healthy non-smokers, healthy smokers, lung cancer, and stable COPD participants. EV miRNA expression was evaluated using the miRCURY LNA miRNA Serum/Plasma assay for 179 specific targets. Significantly dysregulated miRNAs were assessed for discriminatory power using ROC curve analysis. Results: 15 miRNAs were differentially expressed between lung cancer and healthy non-smoking participants, with the greatest single miRNA being miR-205-5p (AUC 0.850), improving to AUC 0.993 in combination with miR-199a-5p. Moreover, 26 miRNAs were significantly dysregulated between lung cancer and healthy smoking participants, with the greatest single miRNA being miR-497-5p (AUC 0.873), improving to AUC 0.953 in combination with miR-22-5p; 14 miRNAs were significantly dysregulated between lung cancer and stable COPD participants, with the greatest single miRNA being miR-27a-3p (AUC 0.803), with two other miRNAs (miR-106b-3p and miR-361-5p) further improving discriminatory power (AUC 0.870). Conclusion: this case control study suggests miRNAs in EVs from plasma holds key biological information specific for lung cancer and warrants further prospective assessment.  相似文献   

11.
12.
MicroRNAs (miRNAs) participate in atrial remodeling and atrial fibrillation (AF) promotion. We determined the circulating miRNA profile in patients with AF and heart failure with reduced ejection fraction (HFrEF), and its potential role in promoting the arrhythmia. In plasma of 98 patients with HFrEF (49 with AF and 49 in sinus rhythm, SR), differential miRNA expression was determined by high-throughput microarray analysis followed by replication of selected candidates. Validated miRNAs were determined in human atrial samples, and potential arrhythmogenic mechanisms studied in HL-1 cells. Circulating miR-199a-5p and miR-22-5p were significantly increased in HFrEF patients with AF versus those with HFrEF in SR. Both miRNAs, but particularly miR-199a-5p, were increased in atrial samples of patients with AF. Overexpression of both miRNAs in HL-1 cells resulted in decreased protein levels of L-type Ca2+ channel, NCX and connexin-40, leading to lower basal intracellular Ca2+ levels, fewer inward currents, a moderate reduction in Ca2+ buffering post-caffeine exposure, and a deficient cell-to-cell communication. In conclusion, circulating miR-199a-5p and miR-22-5p are higher in HFrEF patients with AF, with similar findings in human atrial samples of AF patients. Cells exposed to both miRNAs exhibited altered Ca2+ handling and defective cell-to-cell communication, both findings being potential arrhythmogenic mechanisms.  相似文献   

13.
14.
MicroRNAs (miRNAs) can be secreted into body fluids and have thus been reported as a new type of cancer biomarker. This study aimed to determine whether urinary miRNAs act as noninvasive biomarkers for diagnosing bladder cancer. Small RNA profiles from urine were generated for 10 patients with bladder cancer and 10 healthy controls by using next-generation sequencing. We identified 50 urinary miRNAs that were differentially expressed in bladder cancer compared with controls, comprising 44 upregulated and six downregulated miRNAs. Pathway enrichment analysis revealed that the biological role of these differentially expressed miRNAs might be involved in cancer-associated signaling pathways. Further analysis of the public database revealed that let-7b-5p, miR-149-5p, miR-146a-5p, miR-193a-5p, and miR-423-5p were significantly increased in bladder cancer compared with corresponding adjacent normal tissues. Furthermore, high miR-149-5p and miR-193a-5p expression was significantly correlated with poor overall survival in patients with bladder cancer. The qRT-PCR approach revealed that the expression levels of let-7b-5p, miR-149-5p, miR-146a-5p and miR-423-5p were significantly increased in the urine of patients with bladder cancer compared with those of controls. Although our results indicated that urinary miRNAs are promising biomarkers for diagnosing bladder cancer, this must be validated in larger cohorts in the future.  相似文献   

15.
In this study, we explored the predictive value of serum microRNA (miRNA) expression for early tumor progression during FOLFIRINOX chemotherapy and its association with overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC). A total of 132 PDAC patients of all disease stages were included in this study, of whom 25% showed progressive disease during FOLFIRINOX according to the RECIST criteria. MiRNA expression was analyzed in serum collected before the start and after one cycle of chemotherapy. In the discovery cohort (n = 12), a 352-miRNA RT-qPCR panel was used. In the validation cohorts (total n = 120), miRNA expression was detected using individual RT-qPCR miRNA primers. Before the start of FOLFIRINOX, serum miR-373-3p expression was higher in patients with progressive disease compared to patients with disease control after FOLFIRINOX (Log2 fold difference (FD) 0.88, p = 0.006). MiR-194-5p expression after one cycle of FOLFIRINOX was lower in patients with progressive disease (Log2 FD −0.29, p = 0.044). Both miRNAs were predictors of early tumor progression in a multivariable model including disease stage and baseline CA19-9 level (miR-373-3p odds ratio (OR) 3.99, 95% CI 1.10–14.49; miR-194-5p OR 0.91, 95% CI 0.83–0.99). MiR-373-3p and miR-194-5p did not show an association with OS after adjustment for disease stage, baseline CA19-9, and chemotherapy response. In conclusion, high serum miR-373-3p before the start and low serum miR-194-5p after one cycle are associated with early tumor progression during FOLFIRINOX.  相似文献   

16.
Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM’s diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.  相似文献   

17.
Mitral valve prolapse (MVP) associated with severe mitral regurgitation is a debilitating disease with no pharmacological therapies available. MicroRNAs (miRNA) represent an emerging class of circulating biomarkers that have never been evaluated in MVP human plasma. Our aim was to identify a possible miRNA signature that is able to discriminate MVP patients from healthy subjects (CTRL) and to shed light on the putative altered molecular pathways in MVP. We evaluated a plasma miRNA profile using Human MicroRNA Card A followed by real-time PCR validations. In addition, to assess the discriminative power of selected miRNAs, we implemented a machine learning analysis. MiRNA profiling and validations revealed that miR-140-3p, 150-5p, 210-3p, 451a, and 487a-3p were significantly upregulated in MVP, while miR-223-3p, 323a-3p, 340-5p, and 361-5p were significantly downregulated in MVP compared to CTRL (p ≤ 0.01). Functional analysis identified several biological processes possible linked to MVP. In addition, machine learning analysis correctly classified MVP patients from CTRL with high accuracy (0.93) and an area under the receiving operator characteristic curve (AUC) of 0.97. To the best of our knowledge, this is the first study performed on human plasma, showing a strong association between miRNAs and MVP. Thus, a circulating molecular signature could be used as a first-line, fast, and cheap screening tool for MVP identification.  相似文献   

18.
Abdominal aortic aneurysm (AAA) is a complex disorder that has a significant impact on the aging population. While both genetic and environmental risk factors have been implicated in AAA formation, the precise genetic markers involved and the factors influencing their expression remain an area of ongoing investigation. DNA methylation has been previously used to study gene silencing in other inflammatory disorders and since AAA has an extensive inflammatory component, we sought to examine the genome-wide DNA methylation profiles in mononuclear blood cells of AAA cases and matched non-AAA controls. To this end, we collected blood samples and isolated mononuclear cells for DNA and RNA extraction from four all male groups: AAA smokers (n = 11), AAA non-smokers (n = 9), control smokers (n = 10) and control non-smokers (n = 11). Methylation data were obtained using the Illumina 450k Human Methylation Bead Chip and analyzed using the R language and multiple Bioconductor packages. Principal component analysis and linear analysis of CpG island subsets identified four regions with significant differences in methylation with respect to AAA: kelch-like family member 35 (KLHL35), calponin 2 (CNN2), serpin peptidase inhibitor clade B (ovalbumin) member 9 (SERPINB9), and adenylate cyclase 10 pseudogene 1 (ADCY10P1). Follow-up studies included RT-PCR and immunostaining for CNN2 and SERPINB9. These findings are novel and suggest DNA methylation may play a role in AAA pathobiology.  相似文献   

19.
Autoantibodies-abzymes hydrolyzing DNA, myelin basic protein, and oligosaccharides have been revealed in the sera of patients with multiple sclerosis (MS). In MS, specific microRNAs are found in blood and cerebrospinal fluid, which are characterized by increased expression. Autoantibodies, specifically hydrolyzing four different miRNAs, were first detected in the blood of schizophrenia patients. Here, we present the first evidence that 23 IgG antibodies of MS patients effectively recognize and hydrolyze four neuroregulatory miRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219-5p) and four immunoregulatory miRNAs (miR-21-3p, miR-146a-3p, miR-155-5p, and miR-326). Several known criteria were checked to show that the recognition and hydrolysis of miRNAs is an intrinsic property of MS IgGs. The hydrolysis of all miRNAs is mostly site-specific. The major and moderate sites of the hydrolysis of each miRNA for most of the IgG preparations coincided; however, some of them showed other specific sites of splitting. Several individual IgGs hydrolyzed some miRNAs almost nonspecifically at nearly all internucleoside bonds or demonstrated a combination of site-specific and nonspecific splitting. Maximum average relative activity (RA) was observed in the hydrolysis of miR-155-5p for IgGs of patients of two types of MS—clinically isolated syndrome and relapsing-remitting MS—but was also high for patients with primary progressive and secondary progressive MS. Differences between RAs of IgGs of four groups of MS patients and healthy donors were statistically significant (p < 0.015). There was a tendency of decreasing efficiency of hydrolysis of all eight miRNAs during remission compared with the exacerbation of the disease.  相似文献   

20.
Left ventricular remodeling after acute myocardial infarction (AMI) is associated with adverse prognosis. It is becoming increasingly clear that circulating miRNAs could be promising biomarkers for various pathological processes in the heart, including myocardial infarction, myocardial remodeling and progression to heart failure. In the present study, a total of 359 consecutive patients were recruited. Plasma samples were collected on admission. Echocardiographic studies were performed during the admission and at six months follow-up after AMI. Remodeling was defined as an at least 10% increase from baseline in the left ventricular end-diastolic volume. Plasma miRNA levels were assessed for association with six months mortality or development of heart failure. Results showed that levels of plasma miR-208b and miR-34a were significantly higher in patients with remodeling than those without. Increased miRNA levels were strongly associated with increased risk of mortality or heart failure within six months for miR-208b (OR 17.91, 95% confidence interval = 2.07–98.81, p = 0.003), miR-34a (OR 4.18, 95% confidence interval = 1.36–12.83, p = 0.012) and combination of the two miRNAs (OR 18.73, 95% confidence interval = 1.96–101.23, p = 0.000). The two miRNA panels reclassified a significant proportion of patients with a net reclassification improvement of 11.7% (p = 0.025) and an integrated discrimination improvement of 7.7% (p = 0.002). These results demonstrated that circulating miR-208b and miR-34a could be useful biomarkers for predicting left ventricular remodeling after AMI, and the miRNA levels are associated with increased risk of mortality or heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号