首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Output‐only modal identification is needed when only structural responses are available. As a powerful unsupervised learning algorithm, blind source separation (BSS) technique is able to recover the hidden sources and the unknown mixing process using only the observed mixtures. This paper proposes a new time‐domain output‐only modal identification method based on a novel BSS learning algorithm, complexity pursuit (CP). The proposed concept—independent ‘physical systems’ living on the modal coordinates—connects the targeted constituent sources (and their mixing process) targeted by the CP learning rule and the modal responses (and the mode matrix), which can then be directly extracted by the CP algorithm from the measured free or ambient system responses. Numerical simulation results show that the CP method realizes accurate and robust modal identification even in the closely spaced mode and the highly damped mode cases subject to non‐stationary ambient excitation and provides excellent approximation to the non‐diagonalizable highly damped (complex) modes. Experimental and real‐world seismic‐excited structure examples are also presented to demonstrate its capability of blindly extracting modal information from system responses. The proposed CP is shown to yield clear physical interpretation in modal identification; it is computational efficient, user‐friendly, and automatic, requiring little expertise interactions for implementations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Parametric system identification is used to evaluate seismic soil–structure interaction effects in buildings. The input–output strong motion data pairs needed for evaluations of flexible- and fixed-base fundamental mode parameters are derived. Recordings of lateral free-field, foundation, and roof motions, as well as foundation rocking, are found to be necessary for direct evaluations of modal parameters for both cases of base fixity. For the common situation of missing free-field or base rocking motions, procedures are developed for estimating the modal parameters that cannot be directly evaluated. The accuracy of these estimation procedures for fundamental mode vibration period and damping is verified for eleven sites with complete instrumentation of the structure, foundation, and free-field. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
A procedure to estimate the seismic motion at the base of a building from measured acceleration response at two or more floors is presented. The proposed method is comprised of two steps. In the first step, the dynamic characteristics of the building are inferred by using an output‐only system identification procedure. In the second step, the motion of the base of the building is estimated by using the transfer function of a simplified building model consisting of a shear and flexural continuous beam together with dynamic properties obtained in the first step. The proposed method is validated first with an analytical model subjected to the 1940 El Centro ground motion and then with an instrumented building in California that experienced the 1994 Northridge earthquake, and the ground motions at the base of the building are available. It is shown that the proposed method is capable of providing very good estimates of the motion at the base. The use of the proposed method is finally illustrated on an instrumented building, where the sensor at the base of the building did not function during the 1994 Northridge earthquake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the problem of identification of the modal parameters for a structural system using measured non‐stationary response time histories only. A Bayesian time‐domain approach is presented which is based on an approximation of the probability distribution of the response to a non‐stationary stochastic excitation. It allows one to obtain not only the most probable values of the updated modal parameters and stochastic excitation parameters but also their associated uncertainties using only one set of response data. It is found that the updated probability distribution can be well approximated by a Gaussian distribution centred at the most probable values of the parameters. Examples using simulated data are presented to illustrate the proposed method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper an efficient methodology applying modal analysis is developed to assess systematically the combined soil–structure interaction and torsional coupling effects on asymmetric buildings. This method is implemented in the frequency domain to accurately incorporate the frequency‐dependent foundation impedance functions. For extensively extracting the soil–structure interaction effects, a diagonal transfer matrix in the modal space is derived. A comprehensive investigation of asymmetric building–soil interaction can then be conveniently conducted by examining various types of response quantities. Results of parametric study show that the increasing height‐to‐base ratio of a structure generally amplifies its translational and torsional responses. Moreover, both the translational and torsional responses are reduced for the case where the two resonant frequencies are well separated and this reduction is enhanced with the decreasing values of the relative soil stiffness and the height‐to‐base ratio. The most noteworthy phenomenon may be the fact that the SSI effects can enlarge the translational response if the structure is slender and the two resonant frequencies are very close. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A number of methods have been proposed that utilize the time‐domain transformations of frequency‐dependent dynamic impedance functions to perform a time‐history analysis. Though these methods have been available in literature for a number of years, the methods exhibit stability issues depending on how the model parameters are calibrated. In this study, a novel method is proposed with which the stability of a numerical integration scheme combined with time‐domain representation of a frequency‐dependent dynamic impedance function can be evaluated. The method is verified with three independent recursive parameter models. The proposed method is expected to be a useful tool in evaluating the potential stability issue of a time‐domain analysis before running a full‐fledged nonlinear time‐domain analysis of a soil–structure system in which the dynamic impedance of a soil–foundation system is represented with a recursive parameter model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The primary objective of this paper is to develop output only modal identifi cation and structural damage detection.Identif ication of multi-degree of freedom(MDOF) linear time invariant(LTI) and linear time variant(LTV—due to damage) systems based on Time-frequency(TF) techniques—such as short-time Fourier transform(STFT),empirical mode decomposition(EMD),and wavelets—is proposed.STFT,EMD,and wavelet methods developed to date are reviewed in detail.In addition a Hilbert transform(HT) approach to determine ...  相似文献   

9.
By identifying changes in stiffness parameters, structural damage can be detected and monitored. Although considerable progress has been made in this research area, many challenges remain in achieving robust structural identification based on incomplete and noisy measurement signals. The identification task is made even more difficult if measurement of input force is to be eliminated. To this end, an output‐only structural identification strategy is proposed to identify unknown stiffness and damping parameters. A non‐classical approach based on genetic algorithms (GAs) is adopted. The proposed strategy makes use of the recently developed GA‐based method of search space reduction, which has shown to be able to accurately and reliably identify structural parameters from measured input and output signals. By modifying the numerical integration scheme, input can be computed as the parameter identification task is in progress, thereby eliminating the need to measure forces. Numerical and experimental results demonstrate the power of the strategy in accurate and efficient identification of structural parameters and damage using only incomplete acceleration measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an input and system identification technique for a soil–structure interaction system using earthquake response data. Identification is carried out on the Hualien large‐scale seismic test structure, which was built in Taiwan for international joint research. The identified quantities are the input ground acceleration as well as the shear wave velocities of the near‐field soil regions and Young's moduli of the shell sections of the structure. The earthquake response analysis on the soil–structure interaction system is carried out using the finite element method incorporating the infinite element formulation for the unbounded layered soil medium and the substructured wave input technique. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the earthquake responses measured at several points of the structure, so that the information on the input motion may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated earthquake responses using the identified parameters and input ground motion show excellent agreement with the measured responses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Formulation of a matrix‐valued force–displacement relationship which can take radiation damping into account is of major importance when modelling unbounded domains. This can be done by means of fundamental solutions in space and time in connection with convolution integrals or by means of a frequency dependent boundary element representation, but for discrete frequencies Ω only. In this paper a method for interpolating discrete values of dynamic stiffness matrices by a continuous matrix valued rational function is proposed. The coupling between interface degrees of freedom is fully preserved. Another crucial point in soil–structure interaction analysis is how to implement an approximation in the spectral domain into a time‐domain analysis. Well‐known approaches for the scalar case are based on the partial‐fraction expansion of a scalar rational function. Here, a more general procedure, applicable to MDOF‐systems, for the transformation of spectral rational approximations into the time‐domain is introduced. Evaluation of the partial‐fraction expansion is avoided by using the so‐called mixed variables. Thus, unknowns in the time‐domain are displacements as well as forces. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
A stochastic ground‐motion simulation and modification technique is developed to generate energy‐compatible and spectrum‐compatible (ECSC) synthetic motions through wavelet packet characterization and modification in both frequency and time domains. The ECSC method significantly advances traditional spectral matching approaches, because it generates ground motions that not only match the target spectral accelerations, but also match Arias intensity build‐up and significant durations. The great similarity between the ECSC simulated motions and the actual recorded motions is demonstrated through one‐to‐one comparison of a variety of intensity measures. Extensive numerical simulations were also performed to validate the performance of the ECSC ground motions through nonlinear analyses of elasto‐plastic oscillators. The ECSC method can be easily implemented in the generalized conditional intensity measure framework by directly simulating a set of motions following a targeted distribution of multiple intensity measures. Therefore, the ECSC method has great potential to be used in performance‐based earthquake design and analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
A reassessment of the dynamic characteristics of the 542 m cable‐stayed Bayview Bridge in Quincy, Illinois, is presented using a newly developed output‐only system identification technique. The technique is applied to an extensive set of ambient vibration response data acquired from the bridge in 1987. Vertical, torsional and transverse modal frequencies of the deck are identified, and uncertainty in damping values are estimated using an automated procedure on several redundant measurements at four locations. Important practical implementation issues associated with the implementation of the procedure and selection of algorithm design parameters for stochastic subspace identification techniques are discussed. An overall mean and standard deviation of damping of 1.0±0.8% is estimated considering all identified vertical, torsional and transverse modes in the 0–2 Hz band. The mean damping for the fundamental vertical mode (0.37 Hz) is identified as 1.4±0.5%, and for the first coupled torsion–transverse mode (0.56 Hz) is identified as 1.1±0.8%. Variability in the damping estimates is shown to decrease as estimated modal RMS acceleration levels increase. Standard deviations on estimated damping range from 0.05% to 2%. The results are shown to be a substantial improvement in the evaluation of damping compared to earlier spectral analysis conducted on the same data set. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the origin of rocking‐type excitations and their effects on the response of base isolated structures are studied. In particular, the role of kinematic interaction in the determination of the rocking excitation is highlighted. The cases of surface foundations subjected to horizontally propagating waves, as well as of embedded foundations under vertically incident shear waves are examined. The validity of the kinematic interaction based on the rigid base mat assumption is discussed. It is shown that, in the case of classical horizontal isolation, rocking input may amplify significantly the response of the lower non‐isolated modes. The examination of full three‐dimensional isolation and active and semi‐active control methods demonstrates the efficacy of these methods to improve the performance of seismically isolated structures subjected to rocking excitations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A new predictor–corrector (P–C) method for multi‐site sub‐structure pseudo‐dynamic (PSD) test is proposed. This method is a mixed time integration method in which computational components separable from experimental components are solved by implicit time integration method (Newmark β method). The experiments are performed quasi‐statically based on explicit prediction of displacement. The proposed P–C method has an important advantage as it does not require the determination of the initial stiffness values of experimental components and is thus suitable for representing elastic and inelastic systems. A parameter relating to quality of displacement prediction at boundaries nodes is introduced. This parameter is determined such that P–C method can be applicable to many practical problems. Error‐propagation characteristics of P–C method are also presented. A series of examples including linear and non‐linear soil–foundation–structure interaction problem demonstrate the performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Structural identification is the inverse problem of estimating physical parameters of a structural system from its vibration response measurements. Incomplete instrumentation and ambient vibration testing generally result in incomplete and arbitrarily normalized measured modal information, often leading to an ill‐conditioned inverse problem and non‐unique identification results. The identifiability of any parameter set of interest depends on the amount of independent available information. In this paper, we consider the identifiability of the mass and stiffness parameters of shear‐type systems in output‐only situations with incomplete instrumentation. A mode shape expansion‐cum‐mass normalization approach is presented to obtain the complete mass normalized mode shape matrix, starting from the incomplete non‐normalized modes identified using any operational modal analysis technique. An analysis is presented to determine the minimum independent information carried by any given sensor set‐up. This is used to determine the minimum necessary number and location of sensors from the point of view of minimum necessary information for identification. The different theoretical discussions are illustrated using numerical simulations and shake table experiments. It is shown that the proposed identification algorithm is able to obtain reliably accurate physical parameter estimates under the constraints of minimal instrumentation, minimal a priori information, and unmeasured input. The sensor placement rules can be used in experiment design to determine the necessary number and location of sensors on the monitored system. John Wiley & Sons, Ltd.  相似文献   

17.
A three‐dimensional transmitting boundary is formulated in the Cartesian co‐ordinate system. It is developed for the dynamic soil–structure interaction problems of arbitrary shape foundations in laterally heterogeneous strata overlying rigid bedrock. Dynamics of a rectangular rigid surface foundation on a homogeneous stratum is analysed by a hybrid approach in which the finite region including foundation is modelled by the conventional finite element method and the surrounding infinite region by the newly developed transmitting boundary. To demonstrate its strength, the present method is applied to a rectangular foundation in a horizontally heterogeneous ground consisting of two distinct regions divided by and welded along a vertical plane. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Different levels of model sophistication have recently emerged to support seismic risk assessment of bridges, but mostly at the expense of neglecting the influence of vertical ground motions (VGMs). In this paper, the influence of VGMs on bridge seismic response is presented and the results are compared with the case of horizontal‐only excitations. An advanced finite element model that accounts for VGMs is first developed. Then, to investigate the effect of soil–structure interaction (SSI) including liquefaction potential, the same bridge with soil‐foundation and fixed boundary conditions is also analyzed. Results show that the inclusion of the VGMs has a significant influence on the seismic response, especially for the axial force in columns, normal force of bearings, and the vertical deck bending moments. However, VGMs do not have as much influence on the seismic demand of the pile cap displacements or pile maximum axial forces. Also, the significant fluctuation of the column axial force can reduce its shear and flexural capacity, and a heightened reversal of flexural effects may induce damage in the deck. In addition, relative to the fixed base case, SSI effects tend to reduce response quantities for certain ground motions while increasing demands for others. This phenomenon is explained as a function of the frequency content of the ground motions, the shift in natural vertical periods, and the VGM spectral accelerations at higher modes. Moreover, the mechanisms of liquefaction are isolated relative to SSI effects in nonliquefiable soils, revealing the influence of liquefaction on bridge response under VGMs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the dynamic response of three sample buildings belonging to the Seismic Observatory for Structures, the Italian network for the permanent seismic monitoring of strategic structures, managed by the Italian Department of Civil Protection. The case studies cover different building types that could loosely represent the Italian building stock, with a special emphasis on cultural heritage and masonry structures. Observed under a low‐intensity seismic swarm comprising about 30 aftershocks after a main event, the three buildings are analysed through an input–output, model‐driven linear dynamic identification procedure, depicting the relation between the shaking level at the site and the variation of the equivalent structural modal parameters, while keeping into account the effects of soil–structure interaction. Finite element models will be used to investigate one of the case studies and to compare the law of variation of the structural modal parameters with respect to simplified models proposed by technical standards. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This paper introduces a simple method to consider the effects of inertial soil–structure interaction (SSI) on the seismic demands of a yielding single‐degree‐of‐freedom structure. This involves idealizing the yielding soil–structure system as an effective substitute oscillator having a modified period, damping ratio, and ductility. A parametric study is conducted to obtain the ratio between the displacement ductility demand of a flexible‐base system and that of the corresponding fixed‐base system. It is shown that while additional foundation damping can reduce the overall response, the effects of SSI may also increase the ductility demand of some structures, mostly being ductile and having large structural aspect ratio, up to 15%. Finally, a design procedure is provided for incorporation of the SSI effects on structural response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号