首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We propose electric double‐layer capacitor storage, which has quick response in the output or input of electricity but has a smaller capacity than normal secondary batteries, by application to a residential fuel cell cogeneration system to reduce spike‐shaped electric power consumption. The method is expected to enhance the system utilization rate and to moderate the burdens on a power grid connected to fuel cells or other distributed generators. A low‐pass filter method was introduced for balancing the power supply and demand, and leveling the power input from the grid. According to simulations performed using practically measured load patterns, the appropriate storage capacity is about 500 Wh for a household, and the fuel cell utilization rate or the grid burden improvement is increased by around 40% in comparison with the case of a system without storage capacity. It has been shown that, in an energy network method of five or more households, the storage capacity can be reduced to approximately 40% with extreme burden improvement of less than 90% of the stand‐alone condition. We have also verified the practical operation and the performance of the method by using an experimental system. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 171(3): 16–27, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20913  相似文献   

2.
The home applications of distributed generations facilities such as photovoltaic and gas engine cogeneration systems are growing and many distributed generations are connected to a grid by a DC/AC inverter. The DC/AC inverter is controlled by a phase‐locked loop (PLL) in order to be synchronized with the power system frequency. However, the control scheme of stand‐alone operation uses voltage control, and the PLL is unnecessary. Therefore, it is hard to realize uninterrupted change between stand‐alone and grid‐connected operation. In this paper, we propose a virtual synchronous generator control scheme in order to use the same control scheme in stand‐alone and grid‐connected operation. We carried out experiments to demonstrate the control characteristics.  相似文献   

3.
This paper describes a novel operating method using prediction of photovoltaic (PV) power for a photovoltaic–diesel hybrid power generation system. The system is composed of a PV array, a storage battery, a bidirectional inverter, and a diesel engine generator (DG). The proposed method enables the system to save fuel consumption by using PV energy effectively, reducing charge and discharge energy of the storage battery, and avoiding low‐load operation of the DG. The PV power is simply predicted from a theoretical equation of solar radiation and the observed PV energy for a constant time before the prediction. The fuel consumption of the proposed method is compared with that of other methods by a simulation based on measurement data of the PV power at an actual PV generation system for 1 year. The simulation results indicate that the amount of fuel consumption of the proposed method is smaller than that of any other methods, and is close to that of the ideal operation of the DG. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(3): 8–18, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20116  相似文献   

4.
目前边缘农牧区采用风光互补发电,由于通过各自逆变器运行,存在成本高、能耗高等问题。提出采用双Boost-Buck单一逆变器结构实现风光储联合发电共用直流母线方案,达到降低投资成本和运行能耗的效果。首先设计了基于V2控制双Boost-Buck变换器风光储联合发电的拓扑结构和电路,实现了输入电压在较宽范围内波动时输出电压仍然能够恒值控制的目标,同时采用电压斜坡补偿方法抑制了Boost-Buck电路自激振荡问题。接着基于蓄电池,制定了储能平抑风光波动、九宫分区跟随负荷、模糊充放电等控制策略,达到了风光储发电与逆变器无缝对接。其次基于风光储联合发电系统,进行了减小弃风光电量效益评估。最后基于风光储分布并网和孤岛离网控制模式,研发了软硬件装置,进行了仿真验证和试验测试。结果表明:逆变器输出电流具有良好的静、动态性能,同时实现了较好的经济性、有效性、稳定性和可靠性。  相似文献   

5.
以光伏及风力发电为代表的分布式电源,其出力的波动性、间歇性及随机性等特点使得所接入的配电网面临来自规划、运行的多重挑战,储能装置的快速响应特性使其成为应对间歇式电源在配电网渗透率日益提高形势下电网安全经济运行问题的重要手段。针对配电网的削峰填谷及平滑负荷变化场景需求,搭建了以成本和电力系统优化运行为目标,同时计及电网和储能装置运行约束的混合储能系统容量优化配置模型,并基于典型储能功能定位计算得出储能类型及容量。算例分析结果表明,该模型智能化地实现了典型场景下混合储能的优化配置。  相似文献   

6.
介绍了太阳能光伏发电系统在电力系统中具有削峰填谷、提高电网稳定性和利用率、改善电能质量等重要作用及我国电力系统建设对太阳能光伏发电系统的迫切要求,并阐述了光伏并网发电系统的组成和控制的发展现状.对蓄电池储能和超级电容器的蓄电池混合储能在光伏发电系统中的应用进行了说明,最后展望了储能技术未来的发展方向。  相似文献   

7.
A “smart house” is a highly energy‐optimized house equipped with photovoltaic (PV) systems, electric battery systems, fuel cell (FC) cogeneration systems, electric vehicles (EVs), and so on. Smart houses are attracting much attention recently because of their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC cogeneration system, and an EV. We formulate the problem as a mixed‐integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand, and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real‐life demands and PV power generation to show the effectiveness of our method. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(4): 48–58, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22336  相似文献   

8.
Recently, renewable energy has been attracting attention as a result of global warming and the depletion of fossil fuels. Photovoltaic (PV) systems have spread rapidly around the world because they generate electric power quietly and can be installed in many places. The output power generated in a PV system fluctuates with changes in solar irradiance and panel temperature. The reverse flow of surplus power in output spikes may have a negative effect on electric power quality, such as on the frequency and voltage in a power system. A residential distributed generation (DG) system composed of a fuel cell (FC) unit, an electrolyzer (EL) unit, and a PV system has been proposed in order to resolve these problems. In order to operate this system without interruption, the hydrogen storage volume must be managed. This paper proposes a novel hydrogen management method for a residential DG system with PV cells and hydrogen‐storage type FCs. The hydrogen storage volume is maintained at the preset frequency by operating the FC unit and the EL unit. Models of the PV, FC, and EL were constructed for a simulation. In the simulation, we showed that the proposed management method is viable for a residential DG system with PV cells and hydrogen‐storage FCs.  相似文献   

9.
分布式新能源发电中储能系统能量管理   总被引:1,自引:0,他引:1  
本文对蓄电池和超级电容组成储能系统的能量管理进行研究,根据两种储能装置的特点和剩余容量以及分布式发电系统的状态,将储能系统的工作模式分类,并对每种工作模式采用不同的控制策略,发挥蓄电池和超级电容自身的优点,保证系统内部的功率平衡,减小风能、太阳能等新能源发电系统功率波动对外部电网的冲击,并实现孤岛运行。最后通过分布式新能源发电系统仿真和实验平台对控制策略进行了验证。  相似文献   

10.
在研究电热负荷与不同时间尺度风功率波动特性的基础上,分析了含储热的热电联产与抽水蓄能协调运行对风电消纳的影响,并提出了基于含储热的热电联产与抽水蓄能的两级协调控制策略。一级协调控制以系统运行成本最小和风电消纳电量最大为目标,根据电热负荷和风电预测出力,通过含储热的热电联产与抽水蓄能在调节容量上的优化配置,提高系统运行经济性和风电消纳率;二级协调控制针对风电出力的实时波动,根据风电计划上网偏差,通过含储热的热电联产与抽水蓄能的协调控制,平抑风电实时波动。以6节点系统为例,验证了所提协调控制策略的有效性,结果表明含储热的热电联产与抽水蓄能的两级协调运行可以有效降低系统运行成本,提高风电消纳水平,保证大规模风电接入情况下电网安全稳定运行。  相似文献   

11.
We evaluated total energy consumption and CO2 emissions in the phases of a city gas utilization system from obtaining raw materials to consuming the product. Assuming monthly and hourly demand figures for electricity, heat for space heating, and hot water in a typical hospital, we explore the optimal size and operation of a city gas system that minimizes the life cycle CO2 emissions or total cost. The cost‐effectiveness of conventional cogeneration, a solar heating system, and hybrid cogeneration utilizing solar heat is compared. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as the on/off condition of switches. As a result of optimization, the hybrid cogeneration can reduce annual CO2 emissions by 43% compared with the system without cogeneration. The sensitivity of CO2 reduction and cost to the scale of the CGS is also analyzed. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 149(1): 22–32, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10369  相似文献   

12.
随着风力、光伏发电,以及储能技术的发展与应用,构建大规模风光储联合发电系统接入电网已成为可能.其中,储能设备的调节控制对联合发电系统尤为重要.基于修正计划出力的方法,提出一种储能系统充放电控制策略,使得联合发电系统供给电网的有功功率波动尽可能最小;通过仿真说明控制策略有效性,利用风光储联合系统供电可靠性指标,分析指标与系统容量配置的关系,提出容量配置优化方法.  相似文献   

13.
光伏发电和光热发电是太阳能发电的2种典型形式。光伏开发成本相对较低,但为保证系统安全稳定运行,须配置一定比例储能和分布式调相机,造成发电成本提升,而光热自带储热和出力友好性,因此目前对于光伏与光热的发展技术路线仍存在较大争议。文中以青海海西地区为例,基于同一时空太阳能辐照资源和出力特性,比较光伏+储能与光热的电力保障能力;然后从电网安全稳定支撑能力角度对光伏+储能+调相机与光热进行比较;最后基于光热和光伏成本下降趋势预测进行二者的经济性对比。研究结果表明,若将光热和光伏放到技术对等层面,则光热由于同时具备储热和常规发电机功能,能够为系统提供短路容量、无功补偿和转动惯量支撑,在成本下降后经济性与光伏+储能+调相机基本相当,甚至更优。  相似文献   

14.
储能装置作为微网的重要组成部分之一,对微网的安全稳定运行起到了重要的作用。基于太阳能光伏发电系统,设计了具有并离网切换功能的储能变流器样机。该样机采用Power PC与FPGA协同配合作为核心元件,使用PQ控制及V/f控制策略,具备并离网切换功能,能够向电网提供有功、无功支撑,稳定电网电压和频率,同时可以配合多种储能设备。使用主被动相结合的孤岛检测方法,快速准确地切换并网离网模式。样机在多种工况下,进行了并离网实验,很好地满足了设计要求,达到工业应用的标准,具有良好的推广价值。  相似文献   

15.
Power generation using natural energy contains electric power fluctuations. Therefore, in order to put such power generation systems to practical use, compensation for system power fluctuations is needed. In this paper, we propose a power compensation method using a biomass gas turbine generator and flywheel energy storage equipment. The gas turbine generator is used for compensation of low‐frequency power fluctuations in order to decrease the required flywheel capacity. The usefulness of the proposed system is confirmed by experiments using a test plant. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 170(3): 1–8, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20896  相似文献   

16.
Abstract

The electricity demand is increasing day by day. On the other side, fossil fuels are depleting at a higher rate. The abundantly available renewable energy sources like solar, wind, and fuel cells are becoming popular sources of energy. But due to the intermittent availability of these renewable energy sources, two or more energy sources are integrated together. Power electronic converters are used for integrating different energy sources. Various power electronic converter (PEC) topologies have been proposed and analyzed in detail to control maximum power point, voltage, frequency, and harmonic distortions. Each of these configurations will differ in its topology and operating principle. The objective of this paper is to present a comprehensive review of various aspects of PEC configurations available for integration of renewable energy sources by systematization into three groups (AC shunt coupled, DC shunt coupled, and hybrid coupled systems). Emphasis is also given to coordination power control, maximum power point, and grid integration challenges related to the hybrid energy system. Furthermore, a general, system modeling of solar, wind, and grid integration is presented here to give an overall picture of a hybrid renewable energy system.  相似文献   

17.
由于风电出力具有随机性和间歇性,大规模风电接入给传统的电力系统调度运行带来新的挑战。风功率预测精度一定程度上不能满足实际要求,因此文章归纳国内外相关研究成果,并分别从两个方面展开论述,首先论述风电场与常规机组联合调度的模型,包括风电确定性模型和风电不确定性模型,概述了当前的建模方法,并对常用的算法进行总结,然后介绍储能技术及其发展状况,对风电场与储能设备协调配合抑制风电场出力波动的研究进行详细介绍。文章最后为考虑大规模并网风电场的发电调度进一步研究提出了意见和建议。  相似文献   

18.
风电场中抽水蓄能系统容量的优化选择   总被引:4,自引:0,他引:4  
为了改善风电场的功率输出特性,在有水资源的地区可采取风 - 水电联合供电模式.本文将风电场中抽水蓄能系统分为抽水系统和发电系统,并以获得风电场最大经济效益为目标建立了风-水电联合优化运行模型,考虑在一定的电网约束条件下,对于风电场中抽水蓄能系统配置不同抽水容量和发电容量的情况,采用改进遗传算法分别进行了优化仿真分析,仿真的结果表明风电场中配置抽水蓄能系统可以增加风电场的综合效益.文章给出的确定风电场中抽水蓄能系统最优容量的方法;具有一定的实践意义.  相似文献   

19.
Characteristics and economics of three power generation systems which utilize solar energy were investigated and compared for systems located in five different regions. The three systems investigated were a solar thermal system, a solar photovoltaic system, and a CO2‐capturing hybrid power generation system utilizing solar thermal energy (referred to as the hybrid system) which has been proposed by the authors. The net generated power energy and the net exergetic efficiency of the hybrid system have been estimated to be larger and higher, respectively, than those of the others. Economic evaluation reveals that the unit cost of generated power energy of the solar thermal system changes most widely corresponding to the change in solar radiation condition and that the cost of the hybrid system changes the least. In general, the most economical system has been estimated to be the solar thermal system in a location which is superior in solar condition and to be the hybrid system in a not so good solar condition. The solar photovoltaic system has the possibility of being the most economical if its construction cost is greatly improved, though the hybrid system is still the most economical under considerably worse solar conditions such as in Osaka. © 1999 Scripta Technica, Electr Eng Jpn, 127(3): 1–12, 1999  相似文献   

20.
在可再生能源发电系统中,为平缓系统输出功率的波动,使其可控性和稳定性更强,普遍利用储能系统作为能量缓冲装置.由于储能装置的资金投入与其容量基本上成正比,合理评估计算储能容量对于整个系统的综合经济效益较为重要.提出利用太阳能和风能的互补性,组成风光互补系统,基于频谱分析,对风、光的能量配比进行仿真计算.结合实测数据,确定了风、光最佳能量配比,减小了对储能系统的容量要求.可以优化风光互补系统的综合经济效益,为今后风光互补系统的设计提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号