首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
GH57家族高温淀粉普鲁兰酶的结构与功能分析   总被引:1,自引:0,他引:1  
摘要:淀粉普鲁兰酶(E.C. 3.2.1.1/41)同时具有淀粉酶(E.C. 3.2.1.1)和普鲁兰酶(E.C. 3.2.1.41)的功能,属于糖苷水解酶GH13和GH57家族。由于淀粉普鲁兰酶可以同时水解α-1,4和α-1,6糖苷键,在淀粉糖化工业中具有降低生产成本、提高生产效率和提高糖化率的作用。其中高温淀粉普鲁兰酶由于能够在淀粉工业液化条件下同时催化淀粉的液化和糖化反应,因此在淀粉糖化工业中更具有应用价值。另外,淀粉普鲁兰酶的双功能催化机制对酶学研究中也具有重要价值。该文就近年高温淀粉普鲁兰酶的结  相似文献   

2.
聂尧  严伟  徐岩 《生物加工过程》2013,11(1):104-112
摘要:普鲁兰酶是能够水解支链淀粉α-1,6-糖苷键的脱支酶,主要应用于食品加工工业,但目前能够满足工业过程要求的普鲁兰酶仍较为有限。利用现代生物技术的新型普鲁兰酶产生菌种的选育、普鲁兰酶的异源表达、基于蛋白结构特征的酶分子改造为具有工业属性普鲁兰酶的开发提供了新的手段。此外,通过底物修饰和固定化也能在一定程度上改善普鲁兰酶的催化特性与功能。主要综述了普鲁兰酶的发现、表达与改造及性能改善方法等方面的研究进展。  相似文献   

3.
探索获得优良的新型普鲁兰酶基因,丰富普鲁兰酶理论,对实现普鲁兰酶国产化具有重要意义。分析GenBank数据库中蜡样芽胞杆菌假定Ⅰ型、Ⅱ型普鲁兰酶基因序列,从实验室保藏的蜡样芽胞杆菌Bacilluscereus GXBC-3中克隆得到3个普鲁兰酶基因pulA、pulB、pulC,并分别导入大肠杆菌进行胞内诱导表达。纯化重组酶酶学性质研究表明重组酶PulA能水解α-l,6-和α-l,4-糖苷键,为Ⅱ型普鲁兰酶,以普鲁兰糖为底物时,最适反应温度及pH分别为40℃和6.5,比活力为32.89 U/mg;以可溶性淀粉为底物时,最适反应温度及pH分别为50℃和7.0,比活力为25.71 U/mg。重组酶PulB和PulC二者均只能水解α-l,6-糖苷键,为I型普鲁兰酶,以普鲁兰糖为底物时,其最适反应温度及pH分别为45℃、7.0和45℃、6.5,比活力分别为228.54 U/mg和229.65 U/mg。  相似文献   

4.
从云南轮马热泉下游淤泥中筛选得到了一株产耐热普鲁兰酶菌株LM14-2.根据形态特征及16S rRNA序列同源性分析,初步判定为Anoxybacillus sp.LM14-2.该菌株发酵上清液中有耐热普鲁兰酶积累,其反应最适pH值为6.0,最适温度为70℃.利用染色体步移技术获得了完整的普鲁兰酶编码基因(HQ660582),经序列相似性进一步分析,确定该蛋白与Ⅰ型普鲁兰酶保守区b相吻合.通常的普鲁兰酶在高温下很快失活,难以满足淀粉加工,洗涤剂等相关工业的需求,而该新型的耐热普鲁兰醇的作用温度广泛,热稳定性较好,65℃保温55 h后达到其半衰期,具有广阔的开发应用前景.  相似文献   

5.
采用基因工程方法对嗜热地芽胞杆菌(Geobacillus kaustophilus)DY115的普鲁兰酶基因pulA在大肠杆菌中进行了克隆表达。该基因ORF全长为2 157bp,编码718个氨基酸。重组PulA在大肠杆菌(Escherichia coli)BL21(DE3)中能够有效表达,经Ni-Sepharose亲和层析获得纯化的重组PulA蛋白。PulA最适作用温度为70℃,最适pH为8.0,在65℃和碱性条件下具有良好的热稳定性;K+和Mn2+对PulA活性有明显促进作用,Cu2+和Zn2+则强烈抑制PulA活性;PulA对普鲁兰糖水解能力最强,且其水解支链淀粉和糯米淀粉的能力明显高于直链淀粉;PulA可水解普鲁兰糖的α-(1,6)糖苷键生成麦芽三糖,属于I型普鲁兰酶。这是首次对来源于地芽胞杆菌属(Geobacillus)的高温碱性普鲁兰酶进行报道,由于PulA具有较好的水解淀粉支链的能力,因此其在淀粉加工业以及洗涤业上应用前景良好。  相似文献   

6.
采用基因工程方法对嗜热地芽胞杆菌(Geobacillus kaustophilus)DY115的普鲁兰酶基因pulA在大肠杆菌中进行了克隆表达。该基因ORF全长为2 157bp,编码718个氨基酸。重组PulA在大肠杆菌(Escherichia coli)BL21(DE3)中能够有效表达,经Ni-Sepharose亲和层析获得纯化的重组PulA蛋白。PulA最适作用温度为70℃,最适pH为8.0,在65℃和碱性条件下具有良好的热稳定性;K~+和Mn~(2+)对PulA活性有明显促进作用,Cu~(2+)和Zn~(2+)则强烈抑制PulA活性;PulA对普鲁兰糖水解能力最强,且其水解支链淀粉和糯米淀粉的能力明显高于直链淀粉;PulA可水解普鲁兰糖的α-(1,6)糖苷键生成麦芽三糖,属于I型普鲁兰酶。这是首次对来源于地芽胞杆菌属(Geobacillus)的高温碱性普鲁兰酶进行报道,由于PulA具有较好的水解淀粉支链的能力,因此其在淀粉加工业以及洗涤业上应用前景良好。  相似文献   

7.
根据文献报道的核苷酸序列合成Bacillus deramificans普鲁兰酶成熟肽编码基因BdP.将BdP基因插入芽孢杆菌分泌表达载体pUC980信号肽编码区下游,获得重组质粒pUC980-BdP,重组质粒转化中温α-淀粉酶生产菌解淀粉芽孢杆菌BF7658菌株.摇瓶发酵实验表明,重组转化子发酵液有明显普鲁兰酶酶活,约48 h酶活达到最高水平,为2.8 ASPU/mL.酶学性质分析表明,重组酶最适作用温度约为60℃,最适反应pH为5.0,60℃保温3h仍保存50%的活性.重组酶性质适合淀粉糖化工艺的要求.  相似文献   

8.
根据文献报道的核苷酸序列合成Bacillus deramificans普鲁兰酶成熟肽编码基因BdP。将BdP基因插入芽孢杆菌分泌表达载体pUC980信号肽编码区下游,获得重组质粒pUC980-BdP,重组质粒转化中温α-淀粉酶生产菌解淀粉芽孢杆菌BF7658菌株。摇瓶发酵实验表明,重组转化子发酵液有明显普鲁兰酶酶活,约48h酶活达到最高水平,为2.8ASPU/mL。酶学性质分析表明,重组酶最适作用温度约为60℃,最适反应pH为5.0,60℃保温3h仍保存50%的活性。重组酶性质适合淀粉糖化工艺的要求。  相似文献   

9.
一个新型耐热普鲁兰酶的结构与功能   总被引:1,自引:0,他引:1  
新型普鲁兰酶的研究对于普鲁兰酶制剂的国产化、打破国外垄断具有非常重要的意义。从我国云南腾冲地区轮马热泉的淤泥中分离获得了一株耐热普鲁兰酶产生菌LM 18-11,经16S rDNA序列系统进化树分析,确定该菌为厌氧芽胞杆菌Anoxybacillus属种,并从中克隆获得了耐热普鲁兰酶的编码基因,该酶在55℃-60℃、pH 5.6-6.4的范围内具有最大的反应活性。此外,该酶具有较好的热稳定性,在60℃下处理48 h,仍可保持50%以上的活力;动力学分析该酶的Vmax和Km分别为750 U/mg和1.47 mg/mL,是目前文献报道中比活力最高的耐热普鲁兰酶。同时还对该酶进行了晶体结构分析,结果显示该酶具有?-淀粉酶家族中典型的结构,在N端具有一个特殊的底物结合域,该结构域的缺失导致比活力和底物结合力都有相应降低,Vmax和Km分别为324 U/mg和1.95 mg/mL。同时,将该普鲁兰酶编码基因导入枯草芽胞杆菌中,在P43启动子的控制下,普鲁兰酶基因获得了高效表达,胞外酶活可达42 U/mL,相比初始菌种,表达活力提高40倍以上。研究表明该普鲁兰酶具有很好的应用前景。  相似文献   

10.
普鲁兰酶是一种淀粉脱支酶,因其分子量较大,胞外分泌表达难度较高。需钠弧菌(Vibrionatriegens)是一种新型的蛋白表达宿主,拥有高效的蛋白合成效率。本研究使用基因组整合T7 RNA聚合酶表达框的V.natriegens VnDX为宿主,构建了产全长普鲁兰酶PulA及其截短突变体PulN2的重组需钠弧菌,分析了信号肽、发酵温度、诱导剂浓度、甘氨酸浓度及发酵时间等条件对产酶的影响,并且对比了2种普鲁兰酶在V.natriegens VnDX与大肠杆菌(Escherichia coli)BL21(DE3)中的胞外产酶能力。研究结果显示,普鲁兰酶PulA和PulN2在V.natriegens VnDX中的胞外酶活为61.6 U/mL和64.3 U/mL,分别为E.coli BL21(DE3)最大酶活力的110%和62%。上述结果表明V.natriegens VnDX可以分泌表达大分子量的全长普鲁兰酶PulA,本研究可为其他大分子量蛋白在V.natriegens VnDX中的分泌表达提供参考和借鉴。  相似文献   

11.
Purification and characterization of pullulanase from Aureobasidium pullulans. Pullulanase was purified by using gel—filtration column then on ion exchange using Q-sepharose column yielding a single peak. Purification was further carried out on SP-sepharose column. Molecular weight of pullulanase from A. pullulans was found to be about 73 KDa on the SDS-PAGE 10%. Native-PAGE 10% showed the activity of pullulanase, using polyacrylamide gel containing pullulan. Hydrolysis products from pullulanase activity with soluble starch, glycogen and pullulan on thin layer chromatography appeared as one band which is maltotriose, while α-amylase with soluble starch and glycogen showed two bands which are maltose and maltotriose but α-amylase gave negative result with pullulan on TLC chromatography only. Pullulanase could degrade α-1,6 glycosidic linkage of the previous substrates, while amylase could degrade α-1,4 glycosidic linkage of glycogen, soluble starch and pullulan. MALDI-Ms was employed to deduce protein sequence of pullulanase.  相似文献   

12.
Mature roots of sugar beets, which accumulate large amounts of sucrose but not starch, nevertheless contained acid and neutral amylases, judging from their pH optima, as well as pullulanase. Acid and neutral amylases were partially purified by procedures including fractionation with ammonium sulfate, ion exchange column chromatography, and gel filtration. Acid amylase was classified as an exoamylase, since it produced only glucose from soluble starch, amylopectin. β-limit dextrin, and rabbit liver glycogen. Neutral amylase was classified as an endoamylase, since it liberated maltose as the main product plus a small amount of glucose and oligosaccharides, and was capable of hydrolyzing β-limit dextrin. Pullulanase was purified to apparent homogeneity by procedures including fractionation with ammonium sulfate, Diethylaminoethyl-cellulose column chromatography and affinity chromatography. Pullulanase was capable of hydrolyzing soluble starch, amylopectin, β-limit-dextrin, and pullulan. Debranching of amylopectin was further evident by an increase in extinction coefficient, and by a shift of λmax from 530 to 560 nm when the debranched amylopectin formed a complex with I2-KI.  相似文献   

13.
Pullulanase, a secreted lipoprotein of Klebsiella pneumoniae, is initially localized to the outer face of the outer membrane, as shown by protease and substrate accessibility and by immunofluorescence tests. Freeze-thaw disruption of these cells released both membrane-associated and apparently soluble forms of Pullulanase. Membrane-associated Pullulanase co-fractionated with authentic outer membrane vesicles upon isopycnic sucrose-gradient centrifugation, whereas the quasi-soluble form had the same equilibrium density as inner membrane vesicles and extracellular Pullulanase aggregates. The latter also contained outer membrane maltoporin, but were largely devoid of other membrane components including LPS and lipids. K. pneumoniae carrying multiple copies of the Pullulanase structural gene (pulA) produced increased amounts of cell-associated and secreted Pullulanase, but a large proportion of the enzyme was neither exposed on the cell surface nor released into the medium, even after prolonged incubation. This suggests that factors necessary for Pullulanase secretion were saturated by the over-produced Pullulanase. When pulA was expressed under lacZ promoter control, the Pullulanase which was produced was not exposed on the cell surface at any time, suggesting that Pullulanase secretion genes are not expressed constitutively, and raising the possibility that they, like puM, may be part of the maltose regulon.  相似文献   

14.
In this paper we report identification, cloning and characterization of a novel thermostable pullulanase type I. Pullulanase AmyA1 was detected in a sample of extracellular proteins of thermophilic enrichment culture, growing on starch. The zone of enzymatic activity in zymogram was aligned with the corresponding band on the equivalent gel without substrate. The band was excised from SDS/polyacrylamide gel and subjected to liquid chromatography/mass spectrometry (LC/MS) analysis. LC/MS-based analysis identified thermostable pullulanases, homologues to type I pullulanases of Geobacillus thermodenitrificans NG80-2 and Geobacillus sp. G11MC16. Nucleotide sequences of these two pullulanases were used for design of primers for PCR with DNA from enrichment culture, leaded to 2181 bp PCR product, coding a 726 amino acids protein, named pullulanase AmyA1. Molecular weight of AmyA1 was calculated to be 81.7 kDa. AmyA1 was cloned and expressed in Escherichia coli. Recombinant pullulanase was purified by two chromatographic separation steps. Pullulanase AmyA1 was active against pullulan, glycogen and soluble starch. It was active in the temperature range of 4–95°C, optimum temperature was determined to be 60°C. The highest activity of the recombinant pullulanase was observed at pH 6. Divalent cations Mg2+ and Mn2+ as well as dithiothreitol, Brij 35 and Brij 58 had a stimulating effect on the enzymatic activity. Pullulanase AmyA1 was stable during incubation in the presence of 4 M urea. After removal of the His-tag, addition of Ca2+ stimulated activity of the enzyme suggesting the native pullulanase activity to be dependent on Ca2+. Thermostability of AmyA1 was not enhanced by the addition of Ca2+.  相似文献   

15.
根据NCBI上报道的基因序列设计引物,以长野芽孢杆菌(Bacillus naganoensis)ATCC53909的染色体DNA为模板,PCR扩增普鲁兰酶编码基因pulB。将此基因与表达载体pWB980连接构建重组质粒pWB-pulB,并转化枯草芽孢杆菌WB600。SDS-PAGE结果显示,在100 kD处有特异性条带,经测定重组转化子粗酶液酶活力达10.94 U/mL。酶学性质分析表明,其最适反应温度为60℃,最适反应pH为5.0,且在温度30-60℃及pH4.0-6.0范围内稳定,适合淀粉加工行业的应用。  相似文献   

16.
Trichosporon pullulans IGC 3488 produced extracellular alpha-amylase and glucoamylase activities when grown in batches in a medium containing corn steep liquor and soluble starch or corn starch. alpha-Amylase, unlike glucoamylase activity, was secreted biphasically. For both amylases the maximum concentration was found in stationary phase cultures. The amylolytic enzymes, previously concentrated by ammonium sulfate precipitation, were separated into a glucoamylase fraction and an alpha-amylase fraction by Ultrogel AcA 54 gel filtration. Pullulanase activity was located in the glucoamylase fraction, whereas cyclodextrinase activity was restricted to the alpha-amylase fraction. Isoamylase and alpha-glucosidase were not detected. Electrophoretic analysis showed that alpha-amylase activity was due to a single protein. Glucoamylase, however, occurred in multiple forms. The four glucoamylases and the alpha-amylase were glycoproteins.  相似文献   

17.
Pullulanase was immobilized on tannic acid and TEAE-cellulose, and β-amylase was covalently immobilized on p-aminobenzylcellulose. Both the immobilized enzymes showed similar properties in pH and temperature optima and heat stability. On passing the pullulan solution at high temperature (50°C) through a column packed with immobilized pullulanase, only maltotriose was obtained for ten days and the half-life was about 15 days. In a continuous reaction using immobilized multienzyme, starch was completely converted into maltose at 50°C and at a space velocity of 1.2, a comparative longer half-life (20 days) was obtained. It was concluded that starch was smoothly converted into maltose with the aid of α-amylase contaminated in the immobilized pullulanase and the operational stability of the column increased with 2-5mM Ca2+.  相似文献   

18.
The fine structure of plastids and their starch deposits in differentiating sieve elements was studied in bean (Phaseolus vulgaris L.). Ultrastructural cytochemistry employing two carbohydrases specific for different linkages was then used to compare the chemical nature of "sieve tube starch" (the starch deposited in sieve elements) with that of the ordinary starch of other cell types. Hypocotyl tissue from seedlings was fixed in glutaraldehyde, postfixed in osmium tetroxide, and embedded in Epon-Araldite. Treatment of thin sections on uncoated copper grids with α-amylase or diastase at pH 6.8 to cleave α-(1 → 4) bonds resulted in digestion of ordinary starch grains but not sieve element grains, as determined by electron microscopy. Since α-(1 → 6) branch points in amylopectin-type starches make the adjacent α-(1 → 4) linkages somewhat resistant to hydrolysis by α-amylase, other sections mounted on bare copper or gold grids were treated with pullulanase (a bacterial α-[1 → 6] glucosidase) prior to digestion with diastase. Pullulanase did not digest sieve element starch, but rendered the starch digestible subsequently by α-amylase. Diastase followed by pullulanase did not result in digestion. The results provide evidence that sieve element starch is composed of highly branched molecules with numerous α-(1 → 6) linkages.  相似文献   

19.
A novel mutant enzyme namely H43T CGTase can produce up to 39% γ-cyclodextrin (γ-CD) compared to the native enzyme which produces only 10% γ-CD. The effect of the reaction conditions on γ-CD production was studied using this mutant CGTase. The effects of substrate–buffer combination, starch pretreatment and concentration, pH, additives and finally the use of a debranching enzyme improved the γ-CD ratio further. The tapioca–acetate pair gave the highest conversion (16% conversion) among four types of starch and four buffer system combinations. Gelatinized starch was preferred compared to raw tapioca starch in producing a high percentage of γ-CD and conversion rate. Higher pH especially pH 8–9 led to a higher proportion of γ-CD, and was relatively more apparent when the concentration of starch was increased. Forty-six percent γ-CD was produced using 2.5% gelatinized tapioca starch at pH 8. Pullulanase enzyme was found to be useful in reducing the viscosity of tapioca starch paste thus increasing the efficiency of utilization of starch by CGTase by at least 20- to 30-fold. Up to 48% γ-CD can be produced when 4% pullulanase-pretreated tapioca starch was reacted with the CGTase mutant. It was also found that the supplementation of the reaction mixture with glucose, toluene, or cyclododecanone improved the γ-CD yield by 42.2, 46.4, 43.4, and 43.4%, respectively. All the parameters involved have been shown to affect the product specificity of the mutant H43T CGTase transglycosylation mechanism.  相似文献   

20.
Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号