首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 44 毫秒
1.
近年来,通过群智能算法求解组合优化或连续优化问题以实现高光谱图像混合像元分解方面取得了重要进展和显著成果.本文首先回顾了高光谱图像混合像元分解的研究背景和群智能算法的特点,然后梳理了光谱混合模型及对应的最优化模型,进而介绍了基于群智能算法的端元提取和丰度反演方法,最后通过2组实验比较了群智能算法和其他传统算法在端元提取和丰度反演方面的精度,对基于群智能算法的混合像元分解效果进行了评价.另外,本文也对群智能算法在高光谱图像信息提取中应用的优势和存在的问题进行了总结.  相似文献   

2.
《南昌水专学报》2019,(6):102-109
非负矩阵分解(NMF)作为一种盲源分离的方法,在高光谱图像解混方面已得到广泛应用。然而由于NMF的目标函数具有非凸性,使得其极易陷入局部最小值,为了提高解混精度,通常会根据具体的问题加入一定的约束条件。受丰度矩阵体现出的稀疏性启发,基于稀疏约束的非负矩阵分解高光谱解混算法得到迅猛发展。然而目前该类方法存在对丰度系数稀疏性先验表征不充分导致算法稳定性差的问题。针对该问题,提出了一种基于光谱加权稀疏非负矩阵分解高光谱解混方法,该方法在非负矩阵分解解混模型中引入光谱加权因子刻画丰度系数的稀疏性,以促进所有像元之间的联合稀疏性。通过采用乘性迭代规则法求解该模型。模拟和真实的高光谱数据实验结果均表明本文提出的方法与现有同类算法相比在端元提取精度和丰度估计精度上都更为准确。  相似文献   

3.
针对高光谱图像中以亚像元形式存在的地物的端元光谱提取问题,提出凸面几何理论和部分非负矩阵分解相结合的端元提取方法.通过去噪的正交基子空间投影方法和相似度比较获得原始图像中的纯像元端元,利用纯像元端元光谱对图像逐点求取丰度和重构误差,对误差大于设定阈值的像素集合进行部分非负矩阵分解,求得亚像元级地物的端元光谱.实验结果表明,该端元提取方法能够弥补传统方法的不足,从而实现对亚像元级地物端元光谱的有效提取.  相似文献   

4.
城市多光谱遥感像元分解技术改进研究   总被引:3,自引:0,他引:3  
针对传统线性光谱分解中端元选择范围大、信息损失多的问题,对端元选择做了改进.以上海市中心区域为例,进行了改进研究,并采用高分辨率航空遥感影像进行了检验.结果显示,引入像元纯净指数,为端元的选择提供了基本的定量准则;同时构造了三维特征空间动态交互模式,则从技术上改变了端元选择的模式.均方根以及高分辨率航空影像的抽样检验都表明,混合像元分解的精度较好,说明该改进方法对于城市混合像元分解是可行的.  相似文献   

5.
高光谱图像去除噪声的2个问题:1)在采集和运输的过程中会产生各种各样的噪声,使得人们无法快速且准确地获得信息;2)大部分去除噪声算法都在Tucker或CANDECOMP/PARAFAC(CP)上进行,而Tucker或CP是将高维信号转化为低维,改变了信号固有的结构,对于张量秩的最优估计很难,且涉及的参数使得计算量很大....  相似文献   

6.
为满足高光谱异常检测研究所需的大量地物高光谱图像需求,提出利用待观测地物的高光谱特性仿真数据及背景特性数据生成高光谱图像的方法,开展了典型飞机流动与传热模型、红外辐射特性模型、高光谱图像仿真模型研究;以实验测定的飞机反射率为输入开展目标特性计算,结合实际观测的背景起伏图像,在特定遥感器光谱响应特性、遥感器相对定标误差、随机加性噪声等条件下,生成了不同像元丰度、不同信噪比的高光谱图像,并应用经典的RX算法、CEM算法检测了仿真图像的异常像元。研究结果表明:建立的模型可以根据遥感器的性能指标参数、目标丰度要求生成亚像元高光谱仿真图像。图像可以反映目标飞机像元丰度、信噪比对检测结果的影响,通过调节输入参数可以高效建立针对亚像元异常检测的高光谱仿真图像;应用仿真图像进行RX算法检测高光谱仿真图像时,噪声会对检测结果产生较大影响,当信噪比低至10 dB时,RX算法难以检测出丰度0.4以下的异常像元,采用光谱匹配检测的CEM算法可以在较低像元丰度和信噪比下检测异常,提高检测概率。  相似文献   

7.
稀疏表示的引入为高光谱遥感图像的目标检测提供了新途径,但在其检测过程中,由于过完备字典的构造是直接从高光谱图像中进行获取的,存在不确定性因素且无法实现对亚像元的准确检测。针对上述问题,本文提出了一种基于字典重构的高光谱图像亚像元目标检测算法。该算法利用无监督方法进行过完备字典的构造,确保过完备字典中包含部分目标像元的光谱信息,同时引入二元对立假设模型实现对高光谱图像中亚像元目标的检测。对模拟及真实高光谱遥感图像数据进行实验仿真,通过对实验结果三维图、ROC曲线以及AUC值的对比分析,得出本文所提出的算法,该算法不仅提高了检测精度而且更好地抑制了背景噪声。  相似文献   

8.
利用约束非负矩阵分解的高光谱解混算法   总被引:2,自引:0,他引:2  
由于利用非负矩阵分解方法解决高光谱解混问题时,标准非负矩阵分解目标函数的非凸性影响了最优解的获取.通过对高光谱图像的端元光谱和空间分布特性的分析,提出了以最小估计丰度协方差和单形体各顶点到中心点均方距离总和最小约束的非负矩阵分解(MCMDNMF)算法,其采用投影梯度作为非负矩阵分解的迭代学习规则.MCMDNMF既利用了非负矩阵分解的优点又考虑了高光谱图像的特性,也不需要混合像元中必须有纯像元.仿真实验表明,MCMD-NMF算法能正确地解混出高光谱混合像元中含有的端元光谱,并精确估计出丰度分布.  相似文献   

9.
针对传统的高光谱数据解混方法中存在的解混精度不高、丰度图模糊的缺陷,提出一种基于相关向量机的高光谱图像解混方法(unmixing algorithm based on relevance vector machine,UARVM)。其核心思想是采用改进的一对余型的相关向量机将多分类问题转化为多个二分类的问题,且求取出每个样本所对应的归属类别的概率值,即丰度值来完成图像的解混。理论研究和仿真结果表明:相对于传统解混方法,UARVM解混精度高,丰度分布图效果好。  相似文献   

10.
高光谱影像分类在遥感学科中具有重要的地位,针对传统高光谱图像分类忽略图像空间特征以及分类过程中有标签样本数目少的问题,本文提出了联合多种空间信息的高光谱半监督分类方法.该方法在高光谱图像处理的各个环节均引入了空间信息.此外,该方法对训练样本集进行扩充时,针对高光谱图像的特点,将教与学算法应用于图像分类中,并且将差分算法...  相似文献   

11.
由于高光谱图像的应用在很大程度上受限于其较低的空间分辨率,为此提出了一种结合支持向量机和小波变换的高光谱图像超分辨率制图方法.先对高光谱图像进行光谱解混得到分量图,然后对分量图进行一级小波分解.各局域窗内中心像元的3个高频系数与邻域像元低频系数之间的对应关系表示为训练样本,用于支持向量机的学习.训练好的模型用来对低分辨率图像即分量图进行超分辨率制图.实验表明,这种借助小波变换来获取训练样本的学习方法无需先验信息,相比采用BP神经网络学习的方法,支持向量机的超分辨率制图效果更佳.  相似文献   

12.
《焦作工学院学报》2016,(5):660-665
针对高光谱图像同一像元内存在多种地物种类,且地物之间具有多重反射,导致高光谱数据的非线性,采用传统的线性降维算法效果不佳等问题,提出利用流形学习的方法来寻找嵌入在高维观测数据空间的低维光滑流形,实现高光谱数据的非线性光谱降维。模拟和真实高光谱遥感数据实验结果表明,与传统的线性降维方法 PCA相比,经过等距映射、局部切空间排列等流行学习算法降维后的高光谱图像具有更好的光谱端元可分性。  相似文献   

13.
基于人工蜂群算法高光谱图像波段选择   总被引:1,自引:0,他引:1  
为减少高光谱遥感图像光谱空间冗余、降低计算复杂度,提出一种基于人工蜂群算法的高光谱图像波段选择方法.首先,根据波段相关性矩阵对全波段进行预处理,获得相关性较小的波段子空间;然后,利用人工蜂群算法以最佳指数与JM距离的加权和为适应度函数在各子空间进行邻域搜索,不断更新至收敛为止,从而获得最优波段组合.最后,利用AVIRIS数据和ROSIS数据对提出的算法与基于蚁群,粒子群,拟态物理学算法的波段选择方法进行实验.仿真结果表明:基于人工蜂群算法的波段选择能够在保证良好收敛性的同时,大大降低计算花费,所获得的波段组合用于高光谱图像分类时,可以得到较好的分类精度.  相似文献   

14.
《南昌水专学报》2015,(6):23-29
针对高光谱图像中端元提取的问题,提出了一种基于改进人工蜂群算法的提取方法。首先,为平衡人工蜂群算法全局和局部搜索能力,研究了加权构造蜂引导的搜索策略,构造了改进人工蜂群算法。在8个基准测试函数中进行实验,验证了新算法的性能有明显提升。然后,介绍了基于IABC端元提取的核心思想与主要步骤,与ABC和常规提取算法在模拟和真实高光谱遥感数据中进行实验对比,结果表明了新算法具有更好的适用性。  相似文献   

15.
结合APO算法的高光谱图像波段选择   总被引:3,自引:0,他引:3  
提出了结合拟态物理学优化(APO)算法的高光谱图像波段选择方法.该方法中采用了类间可分性和波段组合的信息量两个主要性能指标的权重组合作为适应度函数.此外,在波段选择之前对高光谱图像进行了子空间划分,使得最优解中的波段间相关性较小,冗余度低.利用AVIRIS图像对提出的算法与经典算法中蚁群算法、遗传算法和粒子群算法进行实验,实验结果证明了本文算法较经典算法在所选波段性能和计算耗时方面都获得令人满意的效果.  相似文献   

16.
针对高光谱图像分类一直面临的小样本、非线性及高维数等问题,分别从原理和实验两个方面分析比较了两种最新的核学习方法——支持向量机(SVM)和相关向量机(RVM)在高光谱图像分类中的异同点.通过对稀疏性、运算时间及分类精度的实验仿真,结果表明:与SVM相比,RVM模型更加稀疏,从而测试时间更短,更有利于大数据量在线测试;然而,RVM的缺点是分类精度略低于SVM.基于此,本文利用Fisher线性鉴别分析(FLDA)技术,在分类前对高光谱数据作可分性预处理,一方面可以降低数据维数、减少计算量,另一方面可以有效地提高小样本区域的分类精度,进而提高RVM的总体分类精度,使得RVM与SVM相比在高光谱图像精细分类方面更具优势.  相似文献   

17.
SVM和RVM对高光谱图像分类的应用潜能分析   总被引:1,自引:0,他引:1  
针对高光谱图像分类一直面临的小样本、非线性及高维数等问题,分别从原理和实验两个方面分析比较了两种最新的核学习方法——支持向量机(SVM)和相关向量机(RVM)在高光谱图像分类中的异同点.通过对稀疏性、运算时间及分类精度的实验仿真,结果表明:与SVM相比,RVM模型更加稀疏,从而测试时间更短,更有利于大数据量在线测试;然而,RVM的缺点是分类精度略低于SVM.基于此,本文利用Fisher线性鉴别分析(FLDA)技术,在分类前对高光谱数据作可分性预处理,一方面可以降低数据维数、减少计算量,另一方面可以有效地提高小样本区域的分类精度,进而提高RVM的总体分类精度,使得RVM与SVM相比在高光谱图像精细分类方面更具优势.  相似文献   

18.
提出改进核空间对称稀疏表达(IKSSR)降维方法来解决高光谱影像(HSI)的波段选择问题.该方法利用核函数方法和稀疏系数的二值约束条件改进对称稀疏表达模型,在映射得到的核空间构建包含所有波段向量对应的数据点的凸包,通过寻找最小凸包的原型点实现波段子集的优化选择.改进核空间对称稀疏表达方法采用矢量量化策略初始化波段子集,利用块坐标下降方法将非凸问题转换为凸目标函数优化问题,实现目标波段子集选取.基于两个公开高光谱数据集,对该方法和4种主流的波段选择方法进行实验比较研究.实验结果表明,利用改进核空间的对称稀疏表达方法得到的总体分类精度优于对称稀疏表达模型和其他3种方法.  相似文献   

19.
基于空域滤波的核RX高光谱图像异常检测算法   总被引:6,自引:1,他引:5  
核RX算法将原始高光谱数据通过非线性映射到高维特征空间进行处理,具有很好的非线性异常检测性能,但当背景数据中混入异常点后背景核矩阵将发生退化,使得漏检率上升.针对此问题,该文提出一种基于空域滤波的核RX算法,利用高光谱图像同一波段相邻像素的空间相关性,采用分波段空域滤波的方式优化背景数据的分布,抑制了异常数据对背景的干扰,构造更加符合背景分布的核矩阵,有效提高检测概率的同时降低了虚警概率.通过试验模拟数据和真实AVIRIS数据的测试检验,说明该算法性能优于传统RX算法以及核RX算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号