首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies and projects showed that a combination of a reverse osmosis desalination plant with a wind power supply is technologically feasible if the reverse osmosis plant is operated with fluctuating and intermittent loads and thus follow the energy supply characteristic of the wind turbine. On this background the goal of this paper is to simulate the system behaviour of a simple reverse osmosis plant under changing process parameters (e.g. feed pressure, recovery or feed flow). These variations are systematized within so-called operational strategies. Therefore, four different operational strategies are analysed in detail with regard to given restrictions e.g. by the membrane system. For each of these strategies the specific energy consumption over the total usable load range is computed with the simulated hydraulic characteristics of each operational strategy. The analysis of the gathered data shows that a membrane system should be operated with constant permeate recovery under fluctuating wind power. This operational strategy provides low specific energy consumption over a broad load range.  相似文献   

2.
The fresh water shortage is a significant problem in many areas of the world such as deserts, rural areas, Mediterranean countries and islands. However, renewable energy potential in these areas is usually high using solar and wind energy. A desalination unit powered by renewable energy sources is a promising solution for this problem. This paper presents the design of a stand-alone hybrid wind-PV system to power a seawater reverse osmosis desalination unit, with energy recovery using a simplified spreadsheet model. A daily and monthly simulation and economic analysis were also performed. The calculated fresh water production cost was 5.2 ?/m3, and the realized energy saving was up to 48% when a pressure-exchanger-type energy recovery unit is considered.  相似文献   

3.
A prototype wind-powered reverse osmosis desalination system was constructed and tested on Coconut Island off the northern coast of Oahu, Hawaii, for brackish water desalination. The system has four major subsystems: a multi-vaned windmill/pump, a flow/pressure stabilizer, a reverse osmosis module, and a control mechanism. The feedback control mechanism, developed by this study, allowed this prototype system to be operated satisfactorily under mild ambient wind of 5 m/s or less. No auxiliary power source was needed. The system operational data showed that at an average wind speed of 5 m/s, brackish feedwater at a total dissolved solids concentration of 3000 mg/1 and at a flow rate of 13 1/min could be processed by this system. The average rejection rate of this prototype system was 97% and the average recovery ratio was 20%. The energy efficiency of the system was measured at 3 5%, which is comparable to the typical energy efficiency of well-operated multi-vaned windmills. Generally, the system's energy efficiency decreases as wind speed increases.  相似文献   

4.
该文对常规膜法海水淡化系统的系统功能、设备出力、蓄水能力、设备选型、运行管理等方面提出了优化调整意见,使之在安全运行的前提下,适应可再生能源电力波动的特点,如此不但能解决可再生能源发电量不稳定、发电量与用电负荷不匹配等问题,大幅提高可再生能源发电设备的利用小时数,还能解决我国淡水资源紧缺问题,创造利用可再生能源和海水资源的新循环经济模式。  相似文献   

5.
介绍了风光互补供电海水淡化装置原理和研制的离网风光互补反渗透海水淡化装置,运行结果表明,该淡化装置吨水能耗约4.8 kWh/m3,适于偏远海岛、船舶、电力供应缺乏的场所,为3~5人的小集体提供生活淡水,具有较强应用推广前景,经济、环境和社会效益明显。  相似文献   

6.
Fabrizio Moreno 《Desalination》2005,171(3):257-265
The paper describes the work carried out in the development of a small wind-powered desalination plant. Analternative control system was studied to serve as a direct interphase between a reverse osmosis desalination plant and a small wind energy conversion system. The main purpose was to reduce or eliminate the need for an energy storage system (usually, a battery bank). In order to achieve this objective, an experimental prototype of a desalination plant and a wind generator simulator were developed. The systems were evaluated under laboratory-controlled conditions and subjected to field trials. The experimental plant desalinates highly saline seawater (35,000 mg/L) at a rate of approximately 0.4 m3/d. This amount of potable water is sufficient to supply the basic water demands in a small community in an isolated location. The paper also describes the identification of technical problems associated with operating a desalination plant with an intermittent source of energy (wind).  相似文献   

7.
为适应风电、太阳能等新能源的波动性,设计了可变负荷的反渗透(RO)海水淡化装置,用电动阀替代常规浓水调节阀,变频器控制高压泵电机,通过PLC控制变频器的输出频率和电动阀的开度使RO海水淡化的功率可调;利用溶解扩散模型分析了变负荷海水淡化的特性,并通过试验验证了相关结论。在维持膜壳内压力稳定的工况下,低功率运行时可以增加系统回收率,降低单位产水能耗,可以降低运行成本。  相似文献   

8.
The worldwide need for fresh water requires more and more plants for the treatment of non-conventional water sources. During the last decades, seawater has become an important source of fresh water in many arid regions. The traditional desalination processes [reverse osmosis (RO), multi stage flash (MSF), multi effect distillation (MED), electrodialysis (ED)] have evoluated to reliable and established processes; current research focuses on process improvements in view of a lower cost and a more environmentally friendly operation. This paper provides an overview of recent process improvements in seawater desalination using RO, MSF, MED and ED. Important topics that are discussed include the use of alternative energy sources (wind energy, solar energy, nuclear energy) for RO or distillation processes, and the impact of the different desalination process on the environment; the implementation of hybrid processes in seawater desalination; pretreatment of desalination plants by pressure driven membrane processes (microfiltration, ultrafiltration and nanofiltration) compared to chemical pretreatment; new materials to prevent corrosion in distillation processes; and the prevention of fouling in reverse osmosis units. These improvements contribute to the cost effectiveness of the desalination process, and ensure a sustainable production of drinking water on long terms in regions with limited reserves of fresh water.  相似文献   

9.
在反渗透海水淡化系统中,高压系统中采用压力交换式能量回收器,大大地降低海水淡化的能耗。压力交换式能量回收器的能量回收效率达到95%以上,本文从其工作原理和反渗透海水淡化设计上阐述其应用的优点。  相似文献   

10.
Solar thermal desalination technologies   总被引:1,自引:0,他引:1  
The use of solar energy in thermal desalination processes is one of the most promising applications of the renewable energies. Solar desalination can either be direct; use solar energy to produce distillate directly in the solar collector, or indirect; combining conventional desalination techniques, such as multistage flash desalination (MSF), vapor compression (VC), reverse osmosis (RO), membrane distillation (MD) and electrodialysis, with solar collectors for heat generation. Direct solar desalination compared with the indirect technologies requires large land areas and has a relatively low productivity. It is however competitive to the indirect desalination plants in small-scale production due to its relatively low cost and simplicity. This paper describes several desalination technologies in commercial and pilot stages of development. The primary focus is on those technologies suitable for use in remote areas, especially those which could be integrated into solar thermal energy systems.  相似文献   

11.
Semipermeable membranes are the core elements for membrane water desalination technologies such as commercial reverse osmosis (RO) process and emerging forward osmosis (FO) process. Structural and chemical properties of the semipermeable membranes determine water flux, salt rejection, fouling resistance, and chemical stability, which greatly impact energy consumption and costs in osmosis separation processes. In recent years, significant progress has been made in the development of high-performance polymer and polymer composite membranes for desalination applications. This paper reviews recent advances in different polymer-based RO and FO desalination membranes in terms of materials and strategies developed for improving properties and performances.  相似文献   

12.
A novel concept for integrating fuel cells with desalination systems is proposed and investigated in this work. Two unique case studies are discussed — the first involving a hybrid system with a reverse osmosis (RO) unit and the second — integrating with a thermal desalination process such as multi-stage flash (MSF). The underlying motivation for this system integration is that the exhaust gas from a hybrid power plant (fuel cell/turbine system) contains considerable amount of thermal energy, which may be utilized for desalination units. This exhaust heat can be suitably used for preheating the feed in desalination processes such as reverse osmosis which not only increases the potable water production, but also decreases the relative energy consumption by approximately 8% when there is an increase of just 8°C rise in temperature. Additionally, an attractive hybrid system application which combines power generation at 70%+ system efficiency with efficient waste heat utilization is thermal desalination. In this work, it is shown that the system efficiency can be raised appreciably when a high-temperature fuel cell co-generates DC power in-situ with waste heat suitable for MSF. Results indicate that such hybrid system could show a 5.6% increase in global efficiency. Such combined hybrid systems have overall system efficiencies (second-law base) exceeding those of either fuel-cell power plants or traditional desalination plants.  相似文献   

13.
Recently, the reverse osmosis has been applied widely to industrial water purification and accepted commercially. A large number of RO systems are now in operation all over the world. Sumitomo Metals adopted the first 3,000 m3/d (800,000 gpd) reverse osmosis system as pretreatment for ion exchange equipment in 1971, which was expanded to a combined capacity of 13,400 m3/d (3.54 mgpd). Since its start up of operation, various operational problems have been experienced at Kashima and cured to establish a stablized modes of operation.This paper presents a comprehensive review of the operation, maintenance, steps taken for trouble-shooting, and performance data of the world's largest reverse osmosis desalination plant operating now in Kashima Steel Works of Sumitomo Metals, Japan.  相似文献   

14.
This paper aims to analyze dual-purpose systems focusing the total cost optimization; a superstructure is proposed to present cogeneration systems and desalination technologies alternatives for the synthesis process. The superstructure consists of excluding components, gas turbines or conventional steam generators with excluding alternatives of supplying fuel for each combustion system. Also, backpressure or condensing/extraction steam turbine for supplying process steam could be selected. Finally one desalination unit chosen between electrically-driven or steam-driven reverse osmosis, multi-effect and multistage flash should be included. The analysis herein performed is based on energy and mass conservation equations, as well as the technological limiting equation of equipment. The results for ten different commercial gas turbines revealed that electrically-driven reverse osmosis was always chosen together with both natural gas and gasified biomass gas turbines.  相似文献   

15.
Government policy, in the form of grants and contracts for desalination technology, has had a major impact on steadily declining costs of desalination. The process, reverse osmosis (RO), exhibits economies of scale, which increases its feasibility as a water treatment technology for large populations. Ultrafiltration, an RO pre-treatment, also shows economies of scale. The real economic costs of desalination technology can be forecast using an ARIMA model. If these costs fall below those of conventional water treatment processes, RO and ultrafiltration become competitive with conventional water treatment technology. Our ARIMA forecasts are validated by using independent plant level cost data.  相似文献   

16.
Cost analysis of seawater desalination with reverse osmosis in Turkey   总被引:1,自引:0,他引:1  
Economically usable water resources per capita are decreasing due to excessive population increase each year in Turkey. For this reason, new water resources should be found in the near future. The potential water resources are seawater or well water both of which need removal of salinity. The most promising treatment method for salinity is reverse osmosis. While reverse osmosis becomes widespread, the cost of the process will decrease. There is no detailed information about cost of seawater desalination in Turkey. In this study, a cost analysis of seawater desalination in Turkey was performed for reverse osmosis systems. The basic parameters of cost analysis such as capacity, recovery, membrane life, energy, chemical costs and flux were evaluated based on the effects on capital, operating and total production costs.  相似文献   

17.
18.
The seawater reverse osmosis (SWRO) membrane desalination process is a relevant and reliable technology for desalination of seawater. However, some serious limitations had recently been discovered during field practice, among them the boron problem seems to have a critical meaning. According to the WHO regulations, the boron concentration should be reduced to less than 0.5 mg/L for drinking water. It was also reported that, this limit is rarely reached for conventional reverse osmosis desalination plants equipped with commercially available membranes. This paper reviews the extensive published literature on separation methods of boron removal from seawater.  相似文献   

19.
G. F. Huff   《Desalination》2004,160(3):285-292
The tendency of solutes in input water to precipitate efficiency lowering scale deposits on the membranes of reverse osmosis (RO) desalination systems is an important factor in determining the suitability of input water for desalination. Simulated input water evaporation can be used as a technique to quantitatively assess the potential for scale formation in RO desalination systems. The technique was demonstrated by simulating the increase in solute concentrations required to form calcite, gypsum, and amorphous silica scales at 25°C and 40°C from 23 desalination input waters taken from the literature. Simulation results could be used to quantitatively assess the potential of a given input water to form scale or to compare the potential of a number of input waters to form scale during RO desalination. Simulated evaporation of input waters cannot accurately predict the conditions under which scale will form owing to the effects of potentially stable supersaturated solutions, solution velocity, and residence time inside RO systems. However, the simulated scale-forming potential of proposed input waters could be compared with the simulated scale-forming potentials and actual scale-forming properties of input waters having documented operational histories in RO systems. This may provide a technique to estimate the actual performance and suitability of proposed input waters during RO.  相似文献   

20.
姜周曙  翁翔彬  王剑  雷淳正 《化工学报》2014,65(6):2172-2178
故障树分析是一种逻辑演绎的故障诊断方法,在核反应堆和航天器可靠性等领域已得到成功应用。反渗透法是目前应用最广泛的海水淡化方法。“脱盐率与产水量下降”是反渗透海水淡化系统中最为典型且损失重大的故障类型。基于对反渗透海水淡化膜组件结构和系统工作流程与机理的深入分析,给出了“脱盐率与产水量下降”的故障树;利用布尔代数求出最小割集及最小径集,完成了对故障基本事件的结构重要度分析,对故障基本事件进行了危险等级划分并提出了上述故障的处理方法。研究工作为超大规模反渗透海水淡化故障诊断专家系统中知识库的构建提供了一套科学实用的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号