首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This paper presents the results of an optimization study, based on minimum water cost, to explore the feasibility of the hybridization of RO and MSF processes. The study explores the possible improvement of MSF process economics. Nine different scenarios for the production of the same capacity of desalted water are presented and compared from the standpoint of minimum water cost, specific capital cost and water recovery. The process and cost models, formulation of the optimization problem and solution outlines were previously presented in the first part of this study. In this work, results show that RO technology is recommended when building new desalination plants. RO technology becomes preferable at low feed concentrations and for brackish water desalination. Although they come in second position after the RO process, some hybrid plants economically exceed by far the MSF process. Computations gave a water cost of 1.1 $/m3 for the brine recycle MSF process against 0.75 $/m3 for the two-stage RO process. Water cost of the MSF process can be reduced by 17 to 24% through hybridization with RO technology.  相似文献   

3.
In Gulf countries, most power plants are co-generation power desalting plants (CPDP) that generate electric energy and also produce fresh water through the desalination of seawater. This paper provides detailed technical and economical analyses to evaluate a new generation of dual purpose technology that includes the integration of reverse osmosis (RO) processes with existing thermal desalination processes and power generation (triple hybrid system) at Layyah plant, Sharjah, UAE. Hybridization of sweater reverse osmosis (SWRO) and the multi-stage flash (MSF) technology was considered to improve the performance of latter and reduce the cost of the produced water. Moreover, “idle” power in winter (seasonal surplus of unused power) was mainly utilized by RO to further reduce the cost of the hybrid system for six months of the year. Spinning reserve was also used to further reduce the cost of the proposed hybrid system. Integration ofthe three processes of MSF, MED, and RO desalination technologies could be made at different levels through which the resulting of water cost will depend on the selected configuration and the cost of materials of construction, equipment, membrane, energy, etc. Thus, the capital and annual operating costs were calculated for all potential alternatives for various plant capacities. It was found that for all plant capacities, integrated hybrid systems resulted in most cost effective solution. For example, at a capacity of 50 MIGD, the present worth of the cost was calculated to be 588.7, 443.2, and 380 million US$ for MSF, MED, and hybrid RO systems, respectively.  相似文献   

4.
The economics of medium and large sized (1'000…10'000 m3/d) MSF/ME plants which utilize reject heat at temperatures between 50…90 °C is investigated.It is shown that for a cogeneration plant based on the Rankine cycle in combination with an evaporative desalination plant, there exists a steam condensation temperature (60…80 °C) below which the water production of the cogeneration plant is higher than the production of a power equivalent reverse osmosis plant. Power equivalent means, that the reverse osmosis plant would utilize the electricity otherwise lost when the same Rankine cycle is operated at higher condenser temperature. In spite of the higher investment costs for the evaporative plant, the specific water costs are lower than those for the power equivalent RO plant. Using a Rankine cycle for cogeneration, optimization of reject heat temperature levels is therefore crucial for obtaining economically favourable conditions.Further it is shown, that for todays and assumed future electricity rates and oil prices, the MSF/ME when powered by diesel reject heat produces cheaper water than RO or VC plants. It is necessary however, that the MSF/ME can cope with the inevitable load variations of the diesel power station. Our companys contribution in this field is briefly described.  相似文献   

5.
The worldwide need for fresh water requires more and more plants for the treatment of non-conventional water sources. During the last decades, seawater has become an important source of fresh water in many arid regions. The traditional desalination processes [reverse osmosis (RO), multi stage flash (MSF), multi effect distillation (MED), electrodialysis (ED)] have evoluated to reliable and established processes; current research focuses on process improvements in view of a lower cost and a more environmentally friendly operation. This paper provides an overview of recent process improvements in seawater desalination using RO, MSF, MED and ED. Important topics that are discussed include the use of alternative energy sources (wind energy, solar energy, nuclear energy) for RO or distillation processes, and the impact of the different desalination process on the environment; the implementation of hybrid processes in seawater desalination; pretreatment of desalination plants by pressure driven membrane processes (microfiltration, ultrafiltration and nanofiltration) compared to chemical pretreatment; new materials to prevent corrosion in distillation processes; and the prevention of fouling in reverse osmosis units. These improvements contribute to the cost effectiveness of the desalination process, and ensure a sustainable production of drinking water on long terms in regions with limited reserves of fresh water.  相似文献   

6.
This study investigated the feasibility of the once-through (OT) MSF design for constructing large-capacity desalting plants rather than the conventional brine recycle (BR) MSF configuration. This was to explore the possibility of improving MSF process economics through the application of a simpler process design. It is known that the OT design is characterized by its simplicity and elimination of the brine recirculation pump as well as the rejection section. These features are expected to reduce capital and maintenance costs. The current study is based on comparing the two MSF plant configurations, OT and BR, from the standpoint of minimum heat transfer area, which is a major element in capital investment. Alternative tube layouts, long-tube (LT) and cross-tube (CT) arrangements, were considered. Design calculations were based on a plant capacity of 20 MGD, a gained output ratio of 10, a top brine temperature of 120°C, a feed temperature and concentration of 35°C and 48,000 ppm, respectively. The total number of stages was varied stepwise between 20 and 40. A rigorous mathematical model was developed to solve the optimization problem taking into consideration the nonlinearity of the thermo-physical properties of seawater and steam. The Solver tool of Microsoft Excel was used to determine the optimal solutions. Substantial savings in the heat transfer area can be realized through the application of the LT-OT design when the number of stages goes up to 40. However, comparison of the different MSF designs with the optimal number of stages and minimum heat transfer area tells us that the use of the OT designs is not likely to save more than 1% in heat transfer area relative to the conventional CT-BR configuration. Findings related to the specific chemical consumption are not in favor of OT plants where the consumption ratio varies between 1.7 and 1.9 relative to the CT-BR plants. Of course, excessive chemical consumption penalizes the operating cost of the OT plants. However, the increase in operating costs has to be weighed against the savings in capital cost and lower power consumption due to the elimination of the recycle pump and the heat rejection section. This will determine the use of the OT configuration for building MSF plants in the future. In this event, a detailed cost analysis will be needed.  相似文献   

7.
In light of rapidly rising equipment and fuel costs, recent studies have shown some important results in the economy and optimum designs for dual purpose power/desalting complexes. The desalination cycle chosen for- detailed comparisons in this study is the well known multistage flash (MSF) evaporator, which uses brine recirculation and polyphosphate scale prevention. The multi- stage flash evaporator has found wide spread application in large plants throughout the world. Single units of up to 1400 m3/hr (9.5 MGD), acid dosing, have been built and are now in operation. In general due to corrosion problems, polyphosphate plants are now preferred over the acid one.

A number of schemes for the combined production of power and. water were chosen, mainly a combination of MSF Unit with each of the following power cycle:

• 1- Automatic extraction steam turbine

• 2- Simple gas turbine with waste heat boiler

• 3- Back pressure steam turbineThis paper presents a study of the economic aspects, thermodynamic features and optimization analysis of each of these combined power and water production plants.

The optimum value of the performance ratio and its effect on reducing the cost of water in each of the above mentioned schemes would be discussed in this paper.  相似文献   


8.
This paper is limited primarily to reverse osmosis which is the dominating membrane process in commercial plants. Desalination of brackish water and seawater with reverse osmosis, with special emphasis on costs and energy consumption, is the primary subject discussed in the paper. Some aspects of and development trends in industrial and domestic applications of membrane processes are also taken up, particularly with regard to by-product recovery and water reuse in connection with advanced wastewater treatment.The first RO plant to be brought into operation in Riyadh, Saudi Arabia, is located at Salbukh. The investment and total operation costs for this plant have been calculated in the paper. The water cost is at least twice as high as in a continental U.S. location. The main reason for this is the very high cost of civil and local works in Saudi Arabia. A similar calculation has been made for RO seawater desalination.Increased energy costs during the last decade have directed research and development work for all desalination methods towards reducing energy consumption. It is shown in the paper that energy recovery in connection with RO seawater desalination is particularly feasible. Different methods for energy recovery have been investigated and reported, the preferred methods depending on the size of the RO plant. A large underground RO plant for energy recovery, based on utilization of the static pressure instead of high pressure pumps, has also been studied.Another possible energy-saving, but also water quality improving method has been proposed, viz . a combined MSF-RO dual purpose plant. Excess power for reverse osmosis seems to be more and more available in Saudi Arabia due to the high power/water ratio in MSF dual purpose plants compared to the real demand for power and water.  相似文献   

9.
热膜耦合海水淡化系统的优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
伍联营  肖胜楠  胡仰栋  高从堦 《化工学报》2012,63(11):3574-3578
采用混合节点和分配节点的概念,建立了多级闪蒸(MSF)和反渗透(RO)海水淡化集成系统的超结构模型,以年度总费用最小为目标,引入产水比的概念,并将该参数作为集成系统的一个优化变量,采用改进的遗传算法进行求解,获得了集成系统的最优结构及相应的操作条件。实例结果表明:集成海水淡化系统的淡水成本比独立运行的RO和MSF低,产水比为0.45时集成系统的费用最小,流程结构为MSF-RO。  相似文献   

10.
结合已有的反渗透/多级闪蒸混产系统和发电-多级闪蒸联产系统,设计了一个新的包括热力发电系统、反渗透海水淡化系统和多级闪蒸海水淡化系统的水电联产超结构,对以不同盐度苦咸水、海水为原水的水电联产系统进行了优化设计,通过求解系统以年费用最小为目标函数的非线性数学模型,得到不同盐度下联产系统优化的生产结构. 结果表明,在低盐度(≤25000 mg/L)下采用冷凝式发电和一级反渗透产水,高盐度下采用抽汽冷凝式发电和热膜混合产水,可降低联产系统的年费用,获得较低成本的淡化水. 在本工作所定的生产规模下,优化联产方案的年费用可降低23%~36%.  相似文献   

11.
F. C. Wood 《Desalination》1982,40(3):327-337
The capital and operating costs of MSF seawater desalters have increased drastically over the past decade. Analysis of trends in their major construction and operational costs permits conclusions to be drawn concerning the direction of future developments.If present trends continue, arid, oil-producing countries will require plants of low initial cost, high reliability and ease of operation, rather than new and advanced desalting concepts. On the other hand, oil-importing countries needing desalting must develop less fuel-intensive processes.Although seawater RO can meet these needs, a market for dual-purpose plant of high Performance Ratio will persist, particularly where flexibility of operation is required. Hybrid desalters, combining power-using and thermal desalting techniques, will be developed in these countries. Mechanical vapour compression combined with multiple-effect evaporation and MSF feed preheating is one such process.  相似文献   

12.
China is a country with severe water shortages. Water is becoming scarcer due to population growth, industrialization and urbanization. Recent studies show that by the next 50 years water resources per capita will go down to around 1700 m3, which is the threshold of severe water scarcity. Especially in North China, water shortage has become a critical constraint factor for socioeconomic development in the long run. To solve or eliminate water shortage problems, seawater desalination draws more and more attention as an alternative water supply source. The objective of the study is to assess the potential of desalination as a viable alternate water source for China through analysis of the costs of desalination, the water demand and supply situation as well as water pricing practices in China. Based on the investment costs and estimated operation and maintenance costs, an economic appraisal for the costs of desalination for two main processes, MSF and RO, has been conducted. The study shows that there is a decline of unit cost of desalination over time and the average unit cost of the RO process was lower than that of the MSF process. A unit cost of 0.6 $/m3 for desalting brackish water and 1.0 $/m3 for seawater are suggested to be appropriate for the potential application of desalination in China. Future trends and challenges associated with water shortages and water prices are discussed, leading to conclusions and recommendations regarding the role of desalination as a feasible source of water for the future.  相似文献   

13.
For sea water conversion in single-purpose plants, reverse osmosis (RO) is shown to be more economical than multistage flash (MSF) desalination over a wide range of unit size and fuel cost. Attention is focussed on vertical tube evaporation/vapor compression (VTE/VC) a self-contained, low-energy consuming thermal process which is potentially competitive with RO.  相似文献   

14.
All seawater desalting processes, multi-stage flash (MSF), multi-effect boiling (MEB), mechanical vapor compression (MVC) and seawater reverse osmosis (SWRO) consume significant amounts of energy. The recent increase of fuel oil cost raises the cost of energy consumed for desalting water and the final water cost, and creates more interest in using more energy efficient desalting systems.

The most used desalting systems by distillation (MSF and MEB) are usually combined with power plants in what is called co-generation power desalting plants, CPDP. Fuel is supplied to the CPDP to produce both desalted water D and power W, and the fuel cost is shared between D and W. Exergy analysis and equivalent work are among the methods used to determine the fuel energy charged to each product. When desalting systems, such as SWRO and MVC, are not combined with a power plant, the fuel energy can be directly determined from its electrical power consumption.

In this paper, the fuel energy cost charged to desalting seawater in the presently used CPDP in Kuwait is calculated based on exergy analysis. The MSF, known by its high energy consumption, is the only desalting method used in Kuwait. The MSF units consume 258 kJ/kg thermal energy by steam supplied to the brine heater BH, 16 kJ/kg by steam supplied to steam ejectors, and 4 kWh/m3 mechanical energy for pumping. These MSF units are operated either by:

(1) Steam extracted from extraction/condensing steam turbines EC/ST as in as in Doha West, Azzour, and Sabbiya CPDP. This practice is used in most Gulf area.

(2) Steam supplied directly from boilers as occurred in single purpose desalting plants as Al Shuwaikh plant; or in winter time when no steam turbines are in operation in the CPDP to supply steam to the desalting units.

The CPDP have limited water to power production ratio. While they can cope with the increase of power demand, it cannot satisfy the water demand, which is increasing with higher pace than the power demand.

The case of steam CPDP used in Kuwait is presented in this paper as a reference plant to evaluate the amount of fuel energy consumed to desalt water in MJ/m3, its cost in $/m3. The resulted high fuel cost calls for some modifications in the reference CPDP to lower the energy cost, and to increase its water to power ratio. The modifications include the use of an auxiliary back-pressure steam turbine ABPST supplied with the steam presently extracted to the MSF units. The power output of the ABPST operates MVC or SWRO desalting units; while the ABPST discharged steam operates LT-MEB desalting unit. The desalting fuel energy costs when applying these modifications are also calculated by the exergy analysis and compared with that present situation.

It is also suggested to increase desalted water output by using separate SWRO desalting units operated by the existing power plants of typical ηc = 0.388, or by new combined gas/steam turbines power cycle GT/ST-CC of typical ηc = 0.54 under construction. The SWRO with energy recovery is assumed to consume typical 5.2 kWh/m3 electric energy.  相似文献   


15.
The two main processes currently in vogue, for sea -water desalination 3?-- multistage flash. (MSF) and reverse osmosis (R.O.) -- are compared, on the basis of cost economics. Cost data are reported for unit sizes up to 10 million (U.S.) gallons per day. Both single-pass and double-pass systems are considered for the R. 0. unit, while the cost of water from MSF plants is calculated for different performance ratios. Controlling factors such. as fuel prices, pretreatment costs, membrane life, energy recovery and terms of financing, are discussed.On the basis of present technology, notwithstanding new developments, it is concluded that R. 0. is the more economical of the two for small unit sizes and regions of high fuel costs. There is a break-even point, depending on these two parameters, beyond which the MSF process yields lower water costs.Attention is focussed on a third process —- Vertical Tube Evaporation/Vapor Compression (VTE/VC), a self-contained, low-energy consuming system which is particularly suitable for barge-mounted or land-based single- purpose (water only) installations. The process, -which, is in an advanced stage of development under Envirogenics Systems Company's R and D program, is potentially competitive with R.O , even for small unit sizes. Future improvements and operational experience could make this the process of choice for single-purpose sea water desalination plants.  相似文献   

16.
The Jeddah IV Power and Desalination Plant is the biggest, dual-purpose plant in the world. Moreover, it is perhaps the first plant of this kind for which authentic cost and operational data are available. As such, it provides a reliable means of assessing the present status of desalination technology and its influence on the cost of power and water.The well-known theoretical methods of cost allocation are used in deriving the product cost from the Jeddah IV plant. The influence of local factors and contractual constraints is discussed. Extrapolations are made to determine the projected cost of water on similar plants but with different performance ratios. Recommendations are made on cost optimization and the most favourable combination for dual-purpose power/desalination plants based on steam turbines and MSF process.  相似文献   

17.
Ismat Kamal   《Desalination》2008,230(1-3):269-280
The paper discusses some misconceptions that have contributed to the continued use of thermal desalination processes and promotion of the hybrid desalination process for new plants being built or considered at Middle East locations. The misconceptions are examined both on the basis of fundamental thermodynamic principles and in terms of practical engineering parameters. The analysis shows that there is no economic or performance advantage in the installation of greenfield hybrid power/thermal desalination/ seawater reverse osmosis (SWRO) plants in preference to power/SWRO plants, because the latter would produce water more cheaply under all conditions and at all fuel costs, and would provide more operational flexibility than the former. The paper identifies situations where the hybrid desalination process can be fully justified: in existing power/desalination plants, where aging boilers and multistage flash (MSF) units need to be repaired or replaced, through retrofitting and repowering. In such situations, abandonment of the MSF process would result in a reduction in the power output of the plant. The paper refers to previous work which showed that the repowering of a typical existing power/desalination station with refurbishment/replacement of the MSF units, together with the addition of SWRO units, would result in a several-fold increase in the water and power output and a dramatic improvement in the fuel efficiency, without any additions to the existing seawater intake system. The paper emphasizes the importance of test stations/demonstration plants at existing power/desalination stations in the Middle East in order to obtain data and make improvements in the technology of higher temperature SWRO, with the feed obtained from the cooling water returning from the power plant condenser and the thermal desalination plant. The paper shows that the potential benefits would easily justify the investment in research and development required to validate this concept.  相似文献   

18.
Ever since seawater desalination has been applied on an industrial scale, and particular in the countries of the Arabian Gulf, the application of desalination processes in dual-purpose facilities—water and power—as a hybrid configuration has been discussed in many feasibility investigations and also planning concepts. It is above all the combination of reverse osmosis with thermal processes that has found increasing interest with the aim of ensuring, as economically as possible, uniform water supplies under the specific, greatly varying load conditions in the Gulf countries. Such design concepts for hybrid configurations encompass straightforward structures with a low degree of coupling between membrane and thermal desalination processes, but range up to very complex configurations with strong interconnections on both the water side and thermally, as well as with several desalination processes connected in series or in parallel. Classical hybrid concepts in which the permeate from an RO desalination component is mixed with distillate from thermal desalination have already been implemented in Saudi Arabian dual-purpose plants, like Jeddah and Yanbu-Medina. Although hybrid systems of greater complexity have been addressed in many design studies and publications, up to now none has been brought to fruition. Coming into consideration asthe design basis for determining the capacity shares of the various desalination processes operated in a hybrid configuration are: arrangement of thermal cycle of the power plant component; water/power ratio of the dual-purpose seawater desalination and power plant; provision of undiminished water production of the desalination plant as electricity generation varies; provision of a specified drinking water quality with regard to composition and salt content; combination of all these aspects. Also gaining in importance are concerns of environmental pollution and sustainable development when selecting seawater desalination and power plant configurations, as well as their optimization when considering desalination and electricity generation as a whole. In the practical design of hybrid membrane and thermal systems, aspects come to light, though, that restrict linking of the two systems and joint utilization of facilities, as conceived in studies and conceptual design investigations. This applies both for common utilization of intakes and the use of heated up cooling water from thermal processes as a feed stream for the RO part of the desalination process. Additionally, requirements of drinking water composition, particularly chloride content, TDS and compliance with a specific residual content of boron, influence specifically the design of the membrane process part and its share in the total desalination capacity. Such practical aspects have greatly influenced the design and configuration of the Fujairah hybrid plant for which, from a total desalination capacity of 100 MIGD (454,600 m3/d), the share of 37.5 MIGD (170,500 m3/d) makes its seawater RO plant the biggest currently being constructed anywhere in the world. From the findings of the engineering of this plant and the idea that, by increasing interconnection between the two processes on the water side, it is possible to advance a hybrid configuration of this type with regard to cost optimization in the membrane installation, but also by joint utilization of the intake equipment, perspectives result for applied research efforts over the near and long terms, for example: long-term behavior of membranes at elevated temperatures; tendency for biofouling in membrane process with common utilization of cooling water and brine; influences of such interconnections on the overall availability of the facility. But also for the operation and maintenance organization of such large facilities, consequences can be foreseen for the future development of hybrid plants, particularly for operation management and organisation of the interplay of the different power plant and desalination systems, monitoring of SWRO membrane replacement and cleaning, as well as controlling water quality.  相似文献   

19.
考虑水需求的水电联产海水淡化系统的优化设计   总被引:1,自引:1,他引:0       下载免费PDF全文
伍联营  胡仰栋  高从堦 《化工学报》2013,64(8):2924-2929
水电联产不仅能缓解淡水资源不足的问题,而且可有效降低能耗和淡化成本。建立了水电联产系统数学模型,将优化设计描述为一个混合整数非线性规划(MINLP)问题,并采用混合编码的遗传算法进行求解,结果表明,以水定电模式下水电联产系统最优操作模式为发电、多级闪蒸(MSF)和反渗透(RO)三者的集成,且MSF和RO的产水比存在最优值,发电采用背压式蒸汽轮机。随着淡水需求量的增加,联产系统的淡水成本逐渐降低,MSF与RO的产水比呈现出逐渐降低的趋势。  相似文献   

20.
Klaus Eimer 《Desalination》1982,40(3):363-372
Multi-stage flash (MSF) desalination plants are designed with specific permissible fouling factors. When these conditions are met, the performance is said to “meet design”.With single- purpose desalinators, fouling of the brine heater can be compensated for by increasing the steam pressure without substantial increase of heat consumption and within the limits of the boiler pressure. With dual-purpose desalinators, the brine heater pressure will influence the efficiency of the turbine process.Fouling of the heat recovery section increases the heat consumption of the MSF process. The distillate production can be maintained within the limits of the boiler.Typical “design fouling factors” have been compiled from literature.The influence of fouling factor on specific heat consumption has been calculated for typical MSF design conceptions, as well as the increase of water costs per m3 with different fuel prices.The costs of various scale prevention methods have been evaluated. The effectiveness of such countermeasures can be quantified by plant experience.This analysis of cost/return gives a basis for a correct economic comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号