首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
吸气喷液是降低压缩机排气温度的有效手段,通过建立制冷系统热力循环计算模型,研究基于吸气喷液的制冷系统热力学状态,以制冷剂R410A为工质,分析在不同工况下热力性能随喷液流量比例的变化趋势。计算结果表明,当喷液流量比例增加到5%时,排气温度平均降低幅度为9℃,功率、制冷量和COP值分别平均下降0.4%、0.6%和0.3%;若蒸发温度增加,功率呈先上升后下降的趋势,蒸发温度每增加5℃,排气温度平均降低幅度为4.5℃,制冷量、COP值分别平均增加17.6%、16.9%;冷凝温度每降低5℃,排气温度平均降低幅度为8℃,功率平均下降11.3%,制冷量、COP值分别平均增加6%、17.9%。  相似文献   

2.
半封闭活塞式制冷压缩机喷液的研究   总被引:1,自引:0,他引:1  
文章分析了喷液对半封闭活塞式制冷压缩机性能的影响,并以三洋C-L150M82型号压缩机进行试验,试验分析了不同工况下喷液对压缩机的排气温度、制冷量、功耗和COP的影响,以及喷液量随蒸发温度与冷凝温度的变化趋势。试验表明制冷剂喷射可以有效的降低排气温度,但同时也降低了制冷量和COP,增加了功耗。喷液的质量流量主要由喷液管和喷液吸气腔的压差,喷液率的变化与制冷量以及温度的变化不是简单的线性比例关系,合理的选择喷液毛细管,就可以优化喷液量,既能有效的降低压缩机的排气温度,又能确保压缩机的性能。  相似文献   

3.
针对高温热泵的工业需求,设计并分析以水为介质的闭式高温热泵系统,系统引入喷水螺杆式水蒸气压缩机,利用喷水实现压缩机排气为饱和状态,满足工业应用高温升(高压比)的技术要求的同时,克服高排气温度会导致的机械及安全问题。计算结果表明:系统在蒸发温度为90℃,冷凝温度为100℃时,COP高达31.48,压缩机喷水注入比为0.019;蒸发温度为75℃,冷凝温度为100℃工况下,系统COP为5.99,对应的压缩机压比为7,注入比为0.103;压缩机比功率随压缩机压比升高而增加,增加幅度随蒸发温度的升高而增大;系统COP随注入水温度的升高而降低,但变化趋势并不大。  相似文献   

4.
根据R32在空气源热泵中的研究和应用现状,介绍系统排气温度控制的3种途径,即中间压力补气(EVI)、中间压力喷液(ELI)和吸气干度控制(SX);提出根据压缩机效率和制冷剂物性预测排气温度的模型,得到R32在EVI,ELI和SX热泵系统的排气温度预测矩阵表,以压缩机吸、排气饱和温度分别为-20℃和40℃为例,为使得排气温度控制在100℃左右,EVI系统补气干度应约为0.90,ELI系统喷液量比率应约为9%,SX系统吸气干度应约为0.96。  相似文献   

5.
本文针对空气源热泵热水器加热至较高水温时系统效率明显下降的问题,研究初始水温对系统性能的影响,通过实验改变初始水温,分析系统各参数随加热水温的变化规律,得到实际运行特性及制热性能恶化的原因。结果表明:相同初始水温,随着加热的进行,COP不断下降,加热前期下降趋势较为平缓,后期变大;不同初始水温,因系统开机时存在"预热"阶段,加热后期又受压缩机大量吸气带液的影响,故平均COP随初始水温的升高呈先减小后增大的趋势;少量吸气带液能有效降低排气温度,改善系统性能,大量吸气带液却增大系统功耗,加剧COP的下降趋势。此外,提出以排气温度下降后再次上升时的拐点作为压缩机开始大量吸气带液的参照点,从而提升系统性能。  相似文献   

6.
利用变频滚动转子式压缩机实验台,研究了压缩机吸气带液对系统性能和排气温度的影响,以寻求降低压缩机排气温度有效、安全的方法。结果表明:在大部分空调工况和运转频率下,当吸气干度约为0.95~0.98时,系统制冷量和COP达到最大值,且压缩机的排气温度显著降低至吸气压力对应的饱和等熵压缩排气温度。考虑到运行的安全性,吸气干度合适的范围为0.95~0.98。  相似文献   

7.
本文以制冷系统不完全过热循环(从压缩机吸气过热至吸气带液)为基础,通过将滚动转子式压缩机分别运行于不同的低频工况下,研究了性能系数、制冷量、压缩比、压缩机功耗、电效率及排气温度等各项制冷系统性能参数的变化特性,提出了该特性下的最佳优化控制策略。结果表明:可适当降低压缩机运行频率并将干度短期控制在0. 98≤x1,此时制冷量相比于常规过热度控制工况(5~10 K)提升8. 3%~16. 6%,性能系数COP提升12. 5%~15%。此外,压缩机电效率仅较常规过热度控制工况降低0. 3%~0. 7%,且实验最低频率(25 Hz)下的电效率值最大;实验最低频率下,节能效果显著,压比进一步降低,排气温度大幅减小,x0. 90时降幅达到40. 3%。  相似文献   

8.
为研究变转速压缩机对复叠式热泵系统的影响,本文搭建了高温压缩机变转速的复叠式热泵实验台。通过实验研究了不同运行工况下系统排气温度、中间温度、制热量、功率及COP随高温压缩机转速的变化规律。结果表明:在冷凝温度为46℃,蒸发温度为-35℃~-10℃时,压缩机运行安全可靠;在冷凝温度为46℃,蒸发温度为-25℃,高温压缩机转速从1 200 r/min增至6 000 r/min,制热量提升了129. 7%,低温压缩机功率减少43.4%; COP随高温压缩机转速的增加呈先增大后减小的趋势,存在最大COP和对应的最佳高温压缩机转速。  相似文献   

9.
针对空气源热泵系统在高温工况下所引起的系统能效降低、排气温度过高等问题,对采取提高电机绝缘等级、喷液旁通法的空气源热泵进行理论分析与试验研究。结果表明:提高电机绝缘等级可降低电机绕组温度、延长电机使用寿命;在室外温度较高的条件下,采用喷液旁通法不仅可提升系统制冷量和EER,而且可以大幅降低排气温度,如室外温度53℃时,系统制冷量较常规系统增大4.29%,EER提升幅度可达40.66%,排气温度降低21.8℃,降低幅度为18.02%。同时,针对系统性能随旁通量的变化进行理论分析并建立数学模型,分析得出系统制冷量和EER均随旁通量的增大先增大后减小,排气温度随旁通量的增大而持续降低;最后通过试验验证该规律,并得出空气源热泵系统的卸荷毛细管存在最佳长度,测试本系统卸荷毛细管最佳长度为450 mm。  相似文献   

10.
本文研究了R32变频滚动转子式制冷系统,实验分析了压缩机运行频率、吸排气压比、蒸发温度对不同吸气状态下压缩机电效率变化规律的影响,并以此建立了适用于吸气过热和吸气带液的压缩机电效率模型。结果表明:1)在相同压比、相同蒸发温度下,压缩机电效率均随电子膨胀阀开度的变大呈线性下降趋势,且吸气带液段斜率大于吸气过热段,即压缩机吸气带液时,压缩机电效率下降程度更大;2)相同压比下,蒸发温度越高,电效率越小;相同蒸发温度下,压缩机压比越高,电效率越小。同时,压缩机压比越高,蒸发温度对压缩机电效率的影响越大;3)验证工况下模型计算值与实际值最大相对误差为1.83%,最小相对误差为0.03%,具有较好的可靠性;4)压缩机在低频率下运行时性能会恶化,此时模型的准确性会降低,因此模型适用于压缩机频率高于额定频率、吸气干度大于0.88的工况。  相似文献   

11.
In this paper, we present a new method for inserting several triangulated surfaces into an existing tetrahedral mesh generated by the meccano method. The result is a conformal mesh where each inserted surface is approximated by a set of faces of the final tetrahedral mesh. First, the tetrahedral mesh is refined around the inserted surfaces to capture their geometric features. Second, each immersed surface is approximated by a set of faces from the tetrahedral mesh. Third, following a novel approach, the nodes of the approximated surfaces are mapped to the corresponding immersed surface. Fourth, we untangle and smooth the mesh by optimizing a regularized shape distortion measure for tetrahedral elements in which we move all the nodes of the mesh, restricting the movement of the edge and surface nodes along the corresponding entity they belong to. The refining process allows approximating the immersed surface for any initial meccano tetrahedral mesh. Moreover, the proposed projection method avoids computational expensive geometric projections. Finally, the applied simultaneous untangling and smoothing process delivers a high‐quality mesh and ensures that the immersed surfaces are interpolated. Several examples are presented to assess the properties of the proposed method.  相似文献   

12.
We associate a variety of innovations with the term "Industry 4.0". The pioneer of many 4.0 modifications forms the basisfor the trend towards the integrated di...  相似文献   

13.
A four-ball tester was used to evaluate the anti-wear performance of three kinds of organomolybdemun compounds in the engine oils, i. e., molybdenum dialkyldithiophosphate (MoDDP), molybdenum dialkyldithiocarbamate ( MoDTC), and sulphur and phosphorus freeorganomolybdeum (Molybdate). The results indicate that a low concentration of MoDDP doesn' t improve the anti-wear properties of the commercial engine oils, but a high concentration of MoDDP can obviously improve the anti-wear properties and the load-carrying capacity of the engine oils. MoDTC doesn' t improve the antiwear properties of the engine oils, but worsens the anti-wear properties of the oils. Signifi can timprove ment of frictional and wear characteristics is obtained with Molybdate added in the commercial engine oils and the formulated oils.  相似文献   

14.
15.
ABSTRACT

The production of ferrous metal increased during the Roman Late Republican period, Principate and Empire. The direct bloomery process was used to extract the metal from its ores using slag-tapping and slag-pit furnaces. The fuel was charcoal and an air blast was introduced by bellows-operated tuyères. Iron formed as a bloom, often as a spongy mass of metal, which contained impurities from the smelting process, including unreacted ore, fuel, slag and fragments from the furnace walls, while the metal was often inhomogeneous with varied carbon contents. Blooms were either smithed directly into bars or ingots or they were broken up, which also allowed the removal of gross impurities and a selection of pieces with similar properties to be made. These could then be forge-welded together and formed into characteristically shaped ingots. Making steel in the furnace seems to have been achieved: it depended on the ore and the furnace and conditions within it. Surface carburization was also carried out. Iron and steel were used extensively in construction and for tools and weapons. Fire welding was often used to add pieces of steel to make the edges of tools and weapons, which could be heat-treated by quenching to harden them.  相似文献   

16.
Standards are the basis for production enterprises to organize production, ex-factory inspection, trade (delivery) and technical exchanges, product certification, quality arbitration and supervision.……  相似文献   

17.
A flow calorimeter for enthalpy increment measurements on condensed gases is presented. A better knowledge of the properties of the liquefied natural gas is needed, and therefore a liquid loop has been designed for our flow calorimeter. The fluid loop in the calorimeter is designed in order to avoid the two-phase region, since two phases would give compositional disturbances in the measurements. The avoidance of the two-phase region is made possible by increasing the pressure of the test fluid after the measurement section, then heating the fluid at super-critical pressure past the critical point. Finally, the fluid is throttled to the low-pressure gas state at the inlet condition of the compressor that circulates the fluid. To perform the pressure increase, a new cryogenic pump has been designed. To evaluate the new equipment, measurements were taken on liquid ethane over the temperature range 146–256 K at pressure between 0.9 and 5.1 MPa.  相似文献   

18.
The end of 2007, over 200 unit products of more than 80 Chinese firms have passed the quality grade certification for liquor products. These products involve distilled spirits, beer, wine, yellow wine, fruit syrup wine and others, and cover over 80% of the national top-branded liquor products.……  相似文献   

19.
Al2O3-ZrO2 nanocomposites were developed starting with the solgel process. Composite alumina-zirconia nanopowders were synthesized from metallorganic precursors (Aluminium secondary butoxide and zirconium Iso propoxide) using the solgel process. The parameters affecting the synthesis—solvent, concentration of precursor, R/H ratio (i.e., dilution of water in solvent)—were varied as also the temperature and pH. BET and TEM were used to measure nanosize. Diffuse reflectance spectroscopy and also qualitative optical absorption led to identical particle size estimate. The variation of process parameters was used to study the effect and interdependence of process parameters. Artificial Neural Networks was used to rigorously analyze the process. Although this led to confirmation of interdependence of parameters, the presence of a single overwhelming solvent variable was also established. Then the optimal process was used to synthesize more nanopowder. To produce bulk nanocomposite the nanopowders were sintered by varying the temperature and time period. The sintered lithoids were probed with a vickers hardness tester to measure elastic modulus, hardness, and fracture toughness. The results showed high elastic modulus, modest hardness, and very high fracture toughness.  相似文献   

20.
Surface characterization and microstructure studies are performed on chemical vapor deposited (CVD) tungsten coating. There is about 2 μm thickness diffusion layer of tungsten in the molybdenum substrate. The thermal shock test shows tungsten coating has good adhesion with molybdenum substrate, but the elements of oxygen and carbon in the tungsten coating have the bad affection to the adhesion. The result of high-temperature diffusion experiment is the diffusion rate from molybdenum substrate to tungsten coating is faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号