首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pallido-recipient thalamus transmits information from the basal ganglia to the cortex and is critical for motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the basal ganglia, but the role of nonpallidal inputs, such as excitatory inputs from cortex, remains unclear. We simultaneously recorded from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a basal ganglia-recipient thalamic nucleus that is necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor cortical nucleus that is also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals that are important for exploratory behavior and learning.  相似文献   

2.
Synaptic organisation of the basal ganglia   总被引:18,自引:0,他引:18  
The basal ganglia are a group of subcortical nuclei involved in a variety of processes including motor, cognitive and mnemonic functions. One of their major roles is to integrate sensorimotor, associative and limbic information in the production of context‐dependent behaviours. These roles are exemplified by the clinical manifestations of neurological disorders of the basal ganglia. Recent advances in many fields, including pharmacology, anatomy, physiology and pathophysiology have provided converging data that have led to unifying hypotheses concerning the functional organisation of the basal ganglia in health and disease. The major input to the basal ganglia is derived from the cerebral cortex. Virtually the whole of the cortical mantle projects in a topographic manner onto the striatum, this cortical information is ‘processed’ within the striatum and passed via the so‐called direct and indirect pathways to the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata. The basal ganglia influence behaviour by the projections of these output nuclei to the thalamus and thence back to the cortex, or to subcortical ‘premotor’ regions. Recent studies have demonstrated that the organisation of these pathways is more complex than previously suggested. Thus the cortical input to the basal ganglia, in addition to innervating the spiny projection neurons, also innervates GABA interneurons, which in turn provide a feed‐forward inhibition of the spiny output neurons. Individual neurons of the globus pallidus innervate basal ganglia output nuclei as well as the subthalamic nucleus and substantia nigra pars compacta. About one quarter of them also innervate the striatum and are in a position to control the output of the striatum powerfully as they preferentially contact GABA interneurons. Neurons of the pallidal complex also provide an anatomical substrate, within the basal ganglia, for the synaptic integration of functionally diverse information derived from the cortex. It is concluded that the essential concept of the direct and indirect pathways of information flow through the basal ganglia remains intact but that the role of the indirect pathway is more complex than previously suggested and that neurons of the globus pallidus are in a position to control the activity of virtually the whole of the basal ganglia.  相似文献   

3.
王艳  王振华  郭志宏  张璠 《解剖科学进展》2006,12(3):236-239,242
目的定性和定量解析内侧皮质运动区投射到运动前区不同部位神经元的分布。方法采用多重标记法在同一只猴运动前区(PM)的三个不同部位即吻背侧部(PMdr)、尾背侧部(PMdc)及腹侧部(PMv)分别注入DY、FB、WGA-HRP三种不同的逆行标记物,对在内侧皮质运动区(MMC)逆行标记神经元的分布进行精确的定位和定量分析。结果投射到PMdr的神经元主要分布在前辅助运动区(prp-SMA)及前扣带回皮质运动区(CMAr);投射到PMdc的神经元,在MMC均有不同的分布,但在后扣带回皮质运动区(CMAc)被标记的神经元量明显多于其它部位;投射到PMv的神经元主要分布在辅助运动区(SMA)和CMAc,在CMAr也有少量标记神经元。结论SMA和CMAc主要投射到PMv,PMdr多接受pre-SMA和CMAr的投射。  相似文献   

4.
Bilateral basal ganglia activation associated with sensorimotor adaptation   总被引:3,自引:0,他引:3  
Sensorimotor adaptation tasks can be classified into two types. When subjects adapt movements to visual feedback perturbations such as in prism lens adaptation, they perform kinematic adaptations. When subjects adapt movements to force field perturbations such as with robotic manipulanda, they perform kinetic adaptations. Neuroimaging studies have shown basal ganglia involvement in kinetic adaptations, but have found little evidence of basal ganglia involvement in kinematic adaptations, despite reports of deficits in patients with diseases of the basal ganglia, such as Parkinson’s and Huntington’s disease, in these. In an effort to resolve such apparent discrepancy, we used FMRI to focus on the first few minutes of practice during kinematic adaptation. Human subjects adapted to visuomotor rotations in the context of a joystick aiming task while lying supine in a 3.0 T MRI scanner. As demonstrated previously, early adaptive processes were associated with BOLD activation in the cerebellum and the sensory and motor cortical regions. A novel finding of this study was bilateral basal ganglia activation. This suggests that, at least for early learning, the neural correlates of kinematic adaptation parallel those of other types of skill learning. We observed activation in the right globus pallidus and putamen, along with the right prefrontal, premotor and parietal cortex, which may support spatial cognitive processes of adaptation. We also observed activation in the left globus pallidus and caudate nucleus, along with the left premotor and supplementary motor cortex, which may support the sensorimotor processes of adaptation. These results are the first to demonstrate a clear involvement of basal ganglia activation in this type of kinematic motor adaptation.  相似文献   

5.
Signaling in the basal ganglia: postsynaptic and presynaptic mechanisms   总被引:1,自引:0,他引:1  
The selection and execution of appropriate motor behavior result in large part from the ability of the basal ganglia to collect, integrate and feedback information coming from the cerebral cortex. The GABAergic medium spiny neurons (MSNs) of the striatum represent the main receiving station of the basal ganglia. These cells are innervated by excitatory glutamatergic fibers from cortex and thalamus, and modulatory dopaminergic fibers from the midbrain. MSNs comprise two populations of projection neurons, which give rise to the direct, striatonigral pathway, and indirect, striatopallidal pathway. Changes in transmission at the level MSNs affect the activity of thalamocortical projection neurons, thereby influencing motor behavior. For instance, the cardinal symptoms of Parkinson's disease, such as tremor, rigidity and bradykinesia, are caused by the selective degeneration of dopaminergic neurons originating in the substantia nigra pars compacta, which modulate the activity of MSNs in the dorsal striatum. The therapy for Parkinson's disease relies on the use of levodopa, but is hampered by neuroadaptive changes affecting dopaminergic and glutamatergic transmission in striatonigral neurons. MSNs are also the target of many psychoactive drugs. For example, caffeine affects motor activity by blocking adenosine receptors in the basal ganglia, thereby affecting neurotransmission in striatopallidal neurons. The present review focuses on studies performed in our laboratory, which provide a molecular framework to understand the effects on motor activity of adenosine and caffeine.  相似文献   

6.
The goal of the present neuroanatomical study in macaque monkeys was twofold: (1) to clarify whether the hand representation of the primary motor cortex (M1) has a transcallosal projection to M1 of the opposite hemisphere; (2) to compare the topography and density of transcallosal connections for the hand representations of M1 and the supplementary motor area (SMA). The hand areas of M1 and the SMA were identified by intracortical microstimulation and then injected either with retrograde tracer substances in order to label the neurons of origin in the contralateral motor cortical areas (four monkeys) or, with an anterograde tracer, to establish the regional distribution and density of terminal fields in the opposite motor cortical areas (two monkeys). The main results were: (1) The hand representation of M1 exhibited a modest homotopic callosal projection, as judged by the small number of labeled neurons within the region corresponding to the contralateral injection. A modest heterotopic callosal projection originated from the opposite supplementary, premotor, and cingulate motor areas. (2) In contrast, the SMA hand representation showed a dense callosal projection to the opposite SMA. The SMA was found to receive also dense heterotopic callosal projections from the contralateral rostral and caudal cingulate motor areas, moderate projections from the lateral premotor cortex, and sparse projections from M1. (3) After injection of an anterograde tracer (biotinylated dextran amine) in the hand representation of M1, only a few small patches of axonal label were found in the corresponding region of M1, as well as in the lateral premotor cortex; virtually no label was found in the SMA or in cingulate motor areas. Injections of the same anterograde tracer in the hand representation of the SMA, however, resulted in dense and widely distributed axonal terminal fields in the opposite SMA, premotor cortex, and cingulate motor areas, while labeled terminals were clearly less dense in M1. It is concluded that the hand representations of the SMA and M1 strongly differ with respect to the strength and distribution of callosal connectivity with the former having more powerful and widespread callosal connections with a number of motor fields of the opposite cortex than the latter. These anatomical results support the proposition of the SMA being a bilaterally organized system, possibly contributing to bimanual coordination.On leave from the Institute of Physiology, Armenian Academy of Sciences, Erevan, Armenia  相似文献   

7.
Summary Several lines of evidence suggest that the supplementary motor area (SMA) and the premotor cortex (PM) may participate in neuronal mechanisms for the initiation of movements. We recorded the impulse activity of single neurons in monkeys that were trained in two behavioral tasks employing, respectively, self-initiated and externally timed movements. Neurons in both areas were activated up to 2.6 s in advance of self-initiated, reward-related arm reaching movements. In the externally timed task, changes occurred during light instructions that preceded movements by 2 s. Neurons also responded to the trigger stimulus for movement. In view of similar premovement activity in the basal ganglia, these cortical regions appear to be parts of a distributed neuronal system for movement initiation.  相似文献   

8.
Despite an intricate understanding of the neural mechanisms underlying visual and motor systems, it is not completely understood in which brain regions humans transfer visual information into motor commands. Furthermore, in the absence of visual information, the retrieval process for motor memory information remains unclear. We report an investigation where visuomotor and motor memory processes were separated from only visual and only motor activation. Subjects produced precision grip force during a functional MRI (fMRI) study that included four conditions: rest, grip force with visual feedback, grip force without visual feedback, and visual feedback only. Statistical and subtractive logic analyses segregated the functional process maps. There were three important observations. First, along with the well-established parietal and premotor cortical network, the anterior prefrontal cortex, putamen, ventral thalamus, lateral cerebellum, intermediate cerebellum, and the dentate nucleus were directly involved in the visuomotor transformation process. This activation occurred despite controlling for the visual input and motor output. Second, a detailed topographic orientation of visuomotor to motor/sensory activity was mapped for the premotor cortex, parietal cortex, and the cerebellum. Third, the retrieval of motor memory information was isolated in the dorsolateral prefrontal cortex, ventral prefrontal cortex, and anterior cingulate. The motor memory process did not extend to the supplementary motor area (SMA) and the basal ganglia. These findings provide evidence in humans for a model where a distributed network extends over cortical and subcortical regions to control the visuomotor transformation process used during visually guided tasks. In contrast, a localized network in the prefrontal cortex retrieves force output from memory during internally guided actions.  相似文献   

9.
Several models of dystonia have emerged from clinical studies providing a comprehensive explanation for the pathophysiology of this movement disorder. However, several points remain unclear notably concerning the specific role of brainstem, basal ganglia nuclei and premotor cortex. We review data collected in sub-human primate to see whether they might provide new insights into the pathophysiology of dystonia. As in human patients, lesions of the putamen induce dystonia, as well as pharmacological manipulations of the dopaminergic system. In addition, primate studies revealed that lesions in brain stem areas involved in the control of muscular tone and GABAergic manipulations in various basal ganglia nuclei or thalamus also lead to dystonia. Moreover, there is a dramatic disruption in the processing of proprioceptive information with abnormal large receptive fields in the basal ganglia, thalamus, primary somesthetic cortex and premotor cortex of dystonic monkeys. These data highlight the idea that dystonia is associated with aberrant sensory representations interfering with motor control. Considering that the supplementary motor area (SMAp) is the target of basal ganglia projections within the motor loop, we propose a model of dystonia in which abnormal excitability, associated with alteration in sensory receptive fields within the SMAp, leads to an abnormal synchronization between primary motor cortex columns. Such a phenomenon might account for the co-contractions of antagonist muscles favored by action and the abnormal postures observed in dystonia.  相似文献   

10.
Activity patterns of projection neurons in the putamen were investigated in behaving monkeys. Stimulating electrodes were implanted chronically into the proximal (MI(proximal)) and distal (MI(distal)) forelimb regions of the primary motor cortex (MI) and the forelimb region of the supplementary motor area (SMA). Cortical inputs to putaminal neurons were identified by excitatory orthodromic responses to stimulation of these motor cortices. Then, neuronal activity was recorded during the performance of a goal-directed reaching task with delay. Putaminal neurons with inputs from the MI and SMA showed different activity patterns, i.e., movement- and delay-related activity, during task performance. MI-recipient neurons increased activity in response to arm-reach movements, whereas SMA-recipient neurons increased activity during delay periods, as well as during movements. The activity pattern of MI + SMA-recipient neurons was of an intermediate type between those of MI- and SMA-recipient neurons. Approximately one-half of MI(proximal)-, SMA-, and MI + SMA-recipient neurons changed activities before the onset of movements, whereas a smaller number of MI(distal)- and MI(proximal + distal)-recipient neurons did. Movement-related activity of MI-recipient neurons was modulated by target directions, whereas SMA- and MI + SMA-recipient neurons had a lower directional selectivity. MI-recipient neurons were located mainly in the ventrolateral part of the caudal aspect of the putamen, whereas SMA-recipient neurons were located in the dorsomedial part. MI + SMA-recipient neurons were found in between. The present results suggest that a subpopulation of putaminal neurons displays specific activity patterns depending on motor cortical inputs. Each subpopulation receives convergent or nonconvergent inputs from the MI and SMA, retains specific motor information, and sends it to the globus pallidus and the substantia nigra through the direct and indirect pathways of the basal ganglia.  相似文献   

11.
An anatomical study of cholinergic innervation in rat cerebral cortex   总被引:8,自引:0,他引:8  
The cholinergic innervation of rat cerebral cortex was studied by immunohistochemical localization of choline acetyltransferase. Stained bipolar cells, fibers and terminals were found in all areas of cortex. The density of cholinergic terminals was similar in all cortical areas with the exception of entorhinal and olfactory cortex, which showed a marked increase in the number of stained terminals. A laminar distribution of cholinergic terminals was found in many cortical areas. In motor and most sensory areas, terminal density was high in layer 1 and upper layer 5, and lowest in layer 4. Visual cortex, in contrast to other cortical areas, was characterized by a dense band of innervation in layer 4. It has been known that the majority of cortical cholinergic structures derive from a projection to cortex from large, multipolar neurons in the basal forebrain, which stain heavily for choline acetyltransferase. In this study, stained fibers were observed to take three different pathways from basal forebrain to cortex. The first, confined to medial aspects of forebrain and cortex, was observed to originate in the septal area, from where fibers formed a discrete bundle, swinging forward around the rostral end of the corpus callosum, then travelling caudally in the cingulate bundle. The second was found to consist of fibers fanning out laterally from the area of the globus pallidus, travelling through the caudate, then continuing for various distances in the corpus callosum before finally turning into the cortex. A third pathway appeared to innervate olfactory and entorhinal cortex. Ibotenic acid injections were made in the area of the globus pallidus to study the effect of lesioning the lateral pathway on the cholinergic innervation in cortex. A major loss of choline acetyltransferase positive terminals was observed in neocortex, but retrosplenial, cingulate, entorhinal and olfactory cortex showed a normal density of cholinergic innervation. The borders separating areas with lesioned cholinergic input from non-lesioned areas were precise. The distribution of stained terminals remaining in cortical areas with lesioned basal forebrain innervation suggests that the basal forebrain projection to cerebral cortex, and not the intrinsic cortical cholinergic neurons, give rise to the laminar distribution of cholinergic terminals observed in normal cortex. To compare the relative densities of different cholinergic cortical systems, the distribution of choline acetyltransferase staining was compared with that of vasoactive intestinal polypeptide and substance P, which are co-localized in some choline acetyltransferase-positive neurons innervating cortex.  相似文献   

12.
The cholinergic neurons of the nucleus basalis of Meynert have been shown to provide the major cholinergic innervation of the cerebral cortex through which cholinergic transmission may modulate cortical activity. This study describes a projection from the cholinergic and non-cholinergic neurons of the nucleus basalis to the reticular nucleus of the thalamus, and a projection from the brainstem cholinergic neurons to the reticular nucleus as well as to other thalamic nuclei. The projection from the nucleus basalis to the reticular nucleus, which itself is synaptically interconnected with other thalamic nuclei, may provide an additional pathway for the modulation of cortical activity by the cholinergic basal forebrain and brainstem groups.  相似文献   

13.
Summary The patterns of convergence of cerebral and peripheral nerve inputs onto interpositus neurons were studied in cebus monkeys. The strongest inputs to interpositus neurons are from motor and somatosensory cortex, with weaker inputs from peripheral nerves and cerebral area 6. The neurons in the anterior portion of interpositus receive cerebral and peripheral inputs primarily representing the hindlimb, while inputs to neurons in the posterior division represent forelimb or mixed forelimb and hindlimb. The hindlimb neurons integrate signals principally from motor cortex, somatosensory cortex, nerves, supplementary motor and medial premotor areas, while forelimb neurons receive inputs from motor, somatosensory, lateral premotor cortical areas and nerves. The results from this study are compared with those from studies of interpositus and dentate neurons in cat and monkey in order to determine the role of n. interpositus in movement. It is suggested that the inputs integrated by interpositus neurons are consistent with a role in up-dating skilled movements.  相似文献   

14.
15.
Several anatomical studies support the existence of recurrent neural pathways from cortical motor areas to the thalamus via basal ganglia and back to the cortex. Neuronal responses to internally and externally generated sequential movements have been studied in the motor and premotor cortex of monkeys, but the involvement of subcortical motor structures such as the thalamus have not been studied in monkeys or humans. We examined the activity of neurons during a sequential button press task in motor thalamus of parkinsonian as well as chronic pain patients undergoing implantation of deep brain stimulating electrodes. Single and dual microelectrode recordings were carried out during an internally generated task with a memorized sequence (MEM) and an externally driven task with the sequence given during task performance (follow). Average histograms of neuronal firing were constructed for each task and aligned with respect to visual cues (ready, go) or button presses (P1, P2, P3). Sequential movements were monitored with surface electromyography and hand accelerometry, and cell responses were divided into movement-defined epochs for ANOVA and post hoc means testing. Of 52 neurons tested, 31 were found to have task-related responses and 10 were task-selective with 4 responding preferentially to MEM and 7 responding preferentially to follow (1 was both). Complex responses were found including preparatory, delay period, and phase- and task-specific activity. These kinds of responses suggest a role of the thalamus in both internally and externally cued arms movement and provide some evidence for a role in sequential movements.  相似文献   

16.
How the motor-related cortical areas modulate the activity of the output nuclei of the basal ganglia is an important issue for understanding the mechanisms of motor control by the basal ganglia. The cortico-subthalamo-pallidal 'hyperdirect' pathway conveys powerful excitatory effects from the motor-related cortical areas to the globus pallidus, bypassing the striatum, with shorter conduction time than effects conveyed through the striatum. We emphasize the functional significance of the 'hyperdirect' pathway and propose a dynamic 'center-surround model' of basal ganglia function in the control of voluntary limb movements. When a voluntary movement is about to be initiated by cortical mechanisms, a corollary signal conveyed through the cortico-subthalamo-pallidal 'hyperdirect' pathway first inhibits large areas of the thalamus and cerebral cortex that are related to both the selected motor program and other competing programs. Then, another corollary signal through the cortico-striato-pallidal 'direct' pathway disinhibits their targets and releases only the selected motor program. Finally, the third corollary signal possibly through the cortico-striato-external pallido-subthalamo-internal pallidal 'indirect' pathway inhibits their targets extensively. Through this sequential information processing, only the selected motor program is initiated, executed and terminated at the selected timing, whereas other competing programs are canceled.  相似文献   

17.
Summary The intralaminar thalamus of anesthetized rats was explored for neurons activated by stimulation of the superior colliculus and responsive to sensory inputs. Neurons activated by stimulation of the intermediate and deep collicular layers were distributed throughout the intralaminar thalamus. Approximately one half of them responded to tectal as well as sensory inputs. The majority were nociceptive or had a more complex response pattern including responses to auditory stimulation. A smaller population of low threshold units had contralateral orofacial receptive fields and responded to light taps; these units were preferentially localized anteriorly in the central lateral and paracentral nuclei. Neurons responsive to tectal and sensory stimulation were randomly intermingled with other neurons which had no detectable sensory input. The results indicate that ascending projection neurons of the intermediate and deep layers of the superior colliculus provide an input to functionally diverse subpopulations of intralaminar thalamic neurons. In view of its projections to motor cortex and basal ganglia, the intralaminar thalamus appears directly implicated in basal ganglia and superior colliculus related mechanisms of attention, arousal and postural orienting.  相似文献   

18.
The function and the origin of replay of motor activity during sleep are currently unknown. Spontaneous activity patterns in the nucleus robustus of the arcopallium (RA) and in HVC (high vocal center) of the sleeping songbird resemble premotor patterns in these areas observed during singing. We test the hypothesis that the nucleus interface of the nidopallium (NIf) has an important role for initiating and shaping these sleep-related activity patterns. In head-fixed, sleeping zebra finches we find that injections of the GABA(A)-agonist muscimol into NIf lead to transient abolishment of premotor-like bursting activity in HVC neurons. Using antidromic activation of NIf neurons by electrical stimulation in HVC, we are able to distinguish a class of HVC-projecting NIf neurons from a second class of NIf neurons. Paired extracellular recordings in NIf and HVC show that NIf neurons provide a strong bursting drive to HVC. In contrast to HVC neurons, whose bursting activity waxes and wanes in burst epochs, individual NIf projection neurons are nearly continuously bursting and tend to burst only once on the timescale of song syllables. Two types of HVC projection neurons-premotor and striatal projecting-respond differently to the NIf drive, in agreement with notions of HVC relaying premotor signals to RA and an anticipatory copy thereof to areas of a basal ganglia pathway.  相似文献   

19.
The activity of neurons in the motor nuclei of the thalamus that project to the cortical motor areas (the primary motor cortex, the ventral and dorsal premotor cortex, and the supplementary motor area) was investigated in monkeys that were performing a task in which wrist extension and flexion movements were instructed by visuospatial cues before the onset of movement. Movement was triggered by a visual, auditory, or somatosensory stimulus. Thalamocortical neurons were identified by a spike collision, and exhibited 2 distinct types of task-related activity: 1) a sustained change in activity during the instructed preparation period in response to the instruction cues (set-related activity); and 2) phasic changes in activity during the reaction and movement time periods (movement-related activity). A number of set- and moment-related neurons exhibited direction selectivity. Most movement-related neurons were similarly active, irrespective of the different sensory modalities of the cue for movement. These properties of neuronal activity were similar, regardless of their target cortical motor areas. There were no significant differences in the antidromic latencies of neurons that projected to the primary and nonprimary motor areas. These results suggest that the thalamocortical neurons play an important role in the preparation for, and initiation and execution of, the movements, but are less important than neurons of the nonprimary cortical motor areas in modality-selective sensorimotor transformation. It is likely that such transformations take place within the nonprimary cortical motor areas, but not through thalamocortical information channels.  相似文献   

20.
Huntington's disease (HD) is characterized by pronounced pathology of the basal ganglia, with numerous studies documenting the pattern of striatal neurodegeneration in the human brain. However, a principle target of striatal outflow, the globus pallidus (GP), has received limited attention in comparison, despite being a core component of the basal ganglia. The external segment (GPe) is a major output of the dorsal striatum, connecting widely to other basal ganglia nuclei via the indirect motor pathway. The internal segment (GPi) is a final output station of both the direct and indirect motor pathways of the basal ganglia. The ventral pallidum (VP), in contrast, is a primary output of the limbic ventral striatum. Currently, there is a lack of consensus in the literature regarding the extent of GPe and GPi neurodegeneration in HD, with a conflict between pallidal neurons being preserved, and pallidal neurons being lost. In addition, no current evidence considers the fate of the VP in HD, despite it being a key structure involved in reward and motivation. Understanding the involvement of these structures in HD will help to determine their involvement in basal ganglia pathway dysfunction in the disease. A clear understanding of the impact of striatal projection loss on the main neurons that receive striatal input, the pallidal neurons, will aid in the understanding of disease pathogenesis. In addition, a clearer picture of pallidal involvement in HD may contribute to providing a morphological basis to the considerable variability in the types of motor, behavioral, and cognitive symptoms in HD. This review aims to highlight the importance of the globus pallidus, a critical component of the cortical‐basal ganglia circuits, and its role in the pathogenesis of HD. This review also summarizes the current literature relating to human studies of the globus pallidus in HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号