首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pb0.4Sr0.6TiO3 (PST) thin films doped with various concentration of Bi were prepared by a sol-gel method. The phase status, surface morphology and dielectric properties of these thin films were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance analyzer, respectively. Results showed that the thin films with the maximum dielectric constant and minimum dielectric loss were obtained for x=0.15. For x<0.15, only pure PST perovskite phase were in the thin films. For 0.2<x<0.4, the PST/Bi2Ti2O7 biphase were obtained. The thin films with pure Bi2Ti2O7 pyrochlore phase were obtained for x=0.67. The biphase thin films had high tunability and high figure of merit (FOM). The FOM of PST/Bi2Ti2O7 biphase thin film was about 6 times higher than that thin films formed with pure perovskite phase or pure pyrochlore phase.  相似文献   

2.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The growth of columnar CeO2, ZnO and ZnO:CeO2−x films on quartz and AA6066 aluminum alloy substrates by economic atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) is reported. A novel and efficient combination of metal acetylacetonate precursors as well as mild operating conditions were used in the deposition process. The correlation among crystallinity, surface morphology and optical properties of the as-prepared films was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The synthesized films showed different crystallographic orientations depending on the ZnO and CeO2 lattice mismatch, cerium content and growth rate. The CeO2 films synthesized in this work showed plate-like compact structures as a result of the growth process typical of CVD. Both pure and ZnO:CeO2−x films were obtained with a hexagonal structure and highly preferred orientation with the c-axis perpendicular to both substrates under the optimal deposition conditions. The microstructure was modified from dense, short round columns to round structures with cavities (“rose-flower-like” structures) and the typical ZnO morphology by controlling the cerium doping the film and substrate nature. High optical transmittance (>87%) was observed in the pure ZnO films. As for the ZnO:CeO2−x films, the optical transmission was decreased and the UV absorption increased, which subsequently was affected by an increase in cerium content. This paper assesses the feasibility of using ZnO:CeO2−x thin films as UV-absorbers in industrial applications.  相似文献   

4.
This paper reports an approach to investigate metal-chalcogen materials as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells. The methodology is illustrated with reference to Co-Se thin films prepared by magnetron sputtering onto a glassy-carbon substrate. Scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) have been used, in parallel with electrochemical activity and stability measurements, to assess how the electrochemical performance relates to chemical composition. It is shown that Co-Se thin films with varying Se are active for oxygen reduction, although the open circuit potential (OCP) is lower than for Pt. A kinetically controlled process is observed in the potential range 0.5-0.7 V (vs reversible hydrogen electrode) for the thin-film catalysts studied. An initial exposure of the thin-film samples to an acid environment served as a pretreatment, which modified surface composition prior to activity measurements with the rotating disk electrode (RDE) method. Based on the SAM characterization before and after electrochemical tests, all surfaces demonstrating activity are dominated by chalcogen. XRD shows that the thin films have nanocrystalline character that is based on a Co(1-x)Se phase. Parallel studies on Co-Se powder supported on XC72R carbon show comparable OCP, Tafel region, and structural phase as for the thin-film model catalysts. A comparison for ORR activity has also been made between this Co-Se powder and a commercial Pt catalyst.  相似文献   

5.
Zinc aluminate compounds have been dispersed in silica matrix prepared by sol-gel method with different compositions for (1 ? x)ZnAl2O4xSiO2. Continuous stirring of ethylene glycol solution contained zinc nitrate, aluminium nitrate and silicon dioxide to produces gel precursor. Structural and morphological studies of (1 ? x)ZnAl2O4xSiO2 thin films were examined by field emission scanning electron microscopy (FESEM) and X-ray diffractometer (XRD) analysis. The FESEM images showed the spherical structures with porosity for (1 ? x)ZnAl2O4xSiO2 thin films. XRD analysis indicated that the crystallite size for (1 ? x)ZnAl2O4xSiO2 increased from 39.79 to 44.34 nm. Fourier transform infra-red analysis showed that the existence of H2O molecules and the presence of nitrate group within the samples. Dielectric permittivity (ε r ) of (1 ? x)ZnAl2O4xSiO2 samples were measured within frequency range from 1 Hz to 1 MHz. The dielectric permittivity, ε r decreased as frequency was applied to the sample. The performance of the patch antenna can be measured using return loss analysis. The highest result shows that the patch antenna resonated at frequency 3.46 GHz and gives ?14.25 dB return loss bandwidth.  相似文献   

6.
The use of plasma-polymerised fluoropolymer (CFxOy) thin films in the manufacture of microelectromechanical systems (MEMS) devices is well-established, being employed in the passivation step of the deep reactive ion etching (DRIE) process, for example. This paper presents an investigation of the effect of exposure to organic and aqueous liquid media on plasma-polymerised CFxOy thin films. Atomic force microscopy (AFM), scanning electron microscopy (SEM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and dynamic wetting measurements were all employed as characterisation techniques. Highly basic aqueous solutions, including known silicon etchants, were found to cause delamination via degradation of the countersurface below the CFxOy thin film. Films were found to be stable in organic solvents, acidic aqueous solutions and slightly basic aqueous solutions.  相似文献   

7.
Holmium doped GaN diluted magnetic semiconductor thin films have been prepared by thermal evaporation technique and subsequent ammonia annealing. X-ray diffraction mea-surements reveal all peaks belong to the purely hexagonal wurtzite structure. Surface mor-phology and composition analysis were carried out by scanning electron microscopy and energy dispersive spectroscopy respectively. The room temperature ferromagnetic proper-ties of Ga1-xHoxN(x=0.0, 0.05) films were analyzed using vibrating sample magnetometer at room temperature. Magnetic measurements showed that the undoped films (i.e. GaN) exhibited diamagnetic behavior, while the Ho-doped (Ga0.95Ho0.05N) film exhibited a ferro-magnetic behavior.  相似文献   

8.
Compositionally graded Ba1−x Sr x TiO3 (BST) (0 ≤ x ≤ 0.4) thin films were fabricated on Pt/Ti/SiO2/Si and YSZ/Pt/Ti/SiO2/Si substrates by a modified sol–gel technique. The YSZ buffer layer was prepared by RF magnetron sputtering. The microstructure of the graded BST films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results showed that all the films have uniform and crack-free surface with a perovskite structure. The graded BST film with an YSZ buffer layer has larger dielectric constant and lower dielectric loss. The leakage current density of the graded BST film with an YSZ buffer layer lowers two orders than the film without buffer layer. The improved electric properties of the graded films with an YSZ buffer layer was attributed to the YSZ buffer layer act as an excellent seeding layer to enhance the graded BST film growth.  相似文献   

9.
We have investigated the doping behavior of rare earth element holmium (Ho3+) in ZnO semiconductor. The structural, microstructure, and magnetic properties of Zn1-xHoxO (x=0.0, 0.04, and 0.05) thin films deposited on Si(100) substrate by thermal evaporation technique were studied. The ceramic targets were prepared by conventional solid state ceramic technique. The pallets used as target were final sintered at 900 oC in the presence of N2 atmosphere. The experimental results of X-ray diffraction (XRD) spectra, surface morphology, and magnetic properties show that the Ho3+ doped ZnO thin films has a strong influence on the materials properties. The higher angle shift in peak position and most preferred (101) orientation were observed in XRD pattern. These spectra confirmed the substitution of Ho3+ in ZnO lattice. The surface morphology and stoichiometry for both bulk and thin films were analyzed by scanning electron microscopy and energy dispersive spectroscopy. It was observed that grain size decreases with the increase of Ho3+. Room temperature ferromagnetism was observed for Zn0.95Ho0.05O films. The ferromagnetism might be attributed to the substitution of Ho ions for Zn2+ in ZnO lattices.  相似文献   

10.
Photocatalytically active Pb-doped TiO2 thin films were prepared on a soda-lime glass substrate by sol-gel dip-coating technique using TiO2 sols containing lead(II) nitrate. The thin films were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-VIS spectroscopy and X-ray diffraction (XRD). A shift of the UV-VIS absorption towards longer wavelengths was observed, which indicated a decrease in the band-gap of TiO2 upon Pb doping. XRD results showed both pure and Pb-doped TiO2 thin films were polycrystalline, anatase type, and oriented predominantly to the (101) plane. A slight shift in the d-spacing for the Pb-doped film indicated the incorporation of Pb into the TiO2 lattice to form Pb x Ti1–x O2 solid solution. AFM results showed Pb-doped TiO2 thin films were composed of larger TiO2 particles and had rougher surface, compared with un-doped TiO2 thin films. XPS results showed that except for the enrichment of Pb near the surface, Pb exists in the forms of Pb x Ti1–x O2 and PbO. Dimethyl-2,2-dichlorovinyl phosphate (DDVP) was efficiently degraded in the presence of the Pb-doped TiO2 thin films by exposing the insecticide solution to sunlight. The mechanism of photocatalytic activity enhancement of the Pb-doped TiO2 thin films was discussed.  相似文献   

11.
Molybdenum oxide thin films have been successfully prepared by direct UV irradiation of amorphous films of a molybdenum dioxide acetylacetonate complex on Si(1 0 0) substrates. Photodeposited films were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and the surface morphology examined by Atomic Force Microscopy (AFM). It was found that as-photodeposited films are uniform and smooth, with thickness of 350 nm, with rms surface roughness of 28 nm and contain non-stoichiometric oxides (MoO3−x). The results of XRD analysis showed that post-annealing of the films in air at 450 °C transforms the sub-oxides to α-MoO3 phase with a much rougher surface morphology (rms = 144 nm). The as-photodeposited MoO3−x films are amorphous, and exhibit better optical quality than annealed films.  相似文献   

12.
采用循环伏安法(CV)对离子液体Reline中三元CuCl2+InCl3+SeCl4体系和四元CuCl2+InCl3+GaCl3+SeCl4体系的电化学行为进行了研究。研究表明,In3+并入三元CIS(Cu-In-Se)薄膜体系和Ga3+并入四元CIGS(Cu-In-Ga-Se)薄膜体系均有两种途径:一是发生共沉积,二是直接还原。利用电感耦合等离子体发射光谱(ICP)和扫描电镜(SEM)对沉积电势、镀液温度和主盐浓度对CIGS薄膜组成、镀层表面形貌的影响进行了测试,结果表明通过工艺参数的选择可以控制Ga/(Ga+In)和CIGS薄膜组成并得到化学计量比为Cu1.00In0.78Ga0.27Se2.13的薄膜。  相似文献   

13.
Iron oxides, magnetite Fe3O4 and hematite Fe2O3 were laser-deposited onto Al substrates at various temperatures, and the Mössbauer spectra of the films were measured. The compositions of the films changed depending on the formation temperature of the substrate, oxide deficiency in the lattice structures and the formation process of the iron oxides. The films were composed of Fe3?x O4 and Fe1?x O independent of the laser-evaporation source (magnetite or hematite). Fe3?x O4 was seen to be dominant at higher temperatures and Fe1?x O was dominant at lower temperatures. The compositions of the films were confirmed by X-ray diffraction (XRD) measurements, and the surfaces of the deposited films were examined using scanning electron microscopy (SEM).  相似文献   

14.
《Solid State Sciences》2004,6(6):547-551
Ba2Bi2NbO9 (BBN) powders with the order of magnitude of nanometer were prepared by a metal organic decomposition (MOD) method. The thermal decomposition of the air-stable BBN precursor solution was studied using a thermal analyser and X-ray diffraction (XRD). Thin films of Ba2Bi2NbO9 (BBN) have been deposited on both alumina (α-Al2O3) and Pt/TiO2/SiO2/(100)Si substrates by spin-coating of the obtained BBN precursor solution. The phase formation, crystallite size and morphology of the thin films were investigated by X-ray diffraction (XRD) and electron microscopy (EM). It is shown that a monophasic BBN phase with good crystallinity can be obtained in the form of thin films on both substrates without excess of bismuth in the precursor solution.  相似文献   

15.
In this paper non-stoichiometric tungsten oxide thin films have been successfully prepared by direct UV irradiation of bis-β-diketonate dioxotungsten(VI) precursor complexes spin-coated Si(1 0 0) substrates. Photodeposited films were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and the surface morphology examined by Atomic Force Microscopy (AFM). The results of XRD analysis showed that the as-photodeposited WO3−x films are amorphous and have a rougher surface than thermally treated films. Post-annealing of the films in air at 500 °C transforms the sub-oxides to a monoclinic WO3 phase.  相似文献   

16.
The compositionally graded Ba1−xCaxZr0.05Ti0.95O3 (x = 0, 0.05, 0.10) (BCZT) thin films with compositional gradient from BaZr0.05Ti0.95O3 to Ba0.90Ca0.10Zr0.05Ti0.95O3 were deposited on Pt/Ti/SiO2/Si substrates by sol-gel processing. The crystal structure of the thin films was determined by X-ray diffraction. Field emission scanning electron microscopy (FESEM) was used to examine crystallite size and morphology of compositionally graded thin films. The dielectric properties of compositionally graded thin films were characterized by measuring the dielectric constant and dielectric loss as a function of temperature, applied electric field and frequency. As a result, compositionally graded thin films with weak temperature dependence were realized. Dielectric constant peaks, common to a ferroelectric transition, were not observed in the temperature range from 298 to 413 K. The compositionally graded BCZT thin films with weak temperature dependence of tunability could be attractive materials for frequency and phase agile tunable microwave components such as tunable filters, tunable oscillators, and phase shifters for application in phased array antennas.  相似文献   

17.
In the present article, we have studied the effect of post annealing treatment on microstructural, optical and photoelectrochemical (PEC) properties of MoBi2S5 thin films synthesized by microwave assisted technique. The synthesized thin films are vacuum annealed for 4 h at 473 K temperature. The X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and UV–Vis–NIR spectrophotometer techniques were used for characterization of the as deposited and annealed MoBi2S5 thin films. The XRD patterns confirm the synthesized and annealed thin films have nanocrystalline nature with rhombohedral-orthorhombic crystal structure. SEM micrographs indicate that, nanoflowers exhibit sharper end after annealing. The optical absorption study illustrates that the optical band gap energy has been decrease from 2.0 eV to 1.75 eV with annealing. Finally, applicability of synthesized thin films has been checked for PEC property. The J-V curves revealed that synthesized thin film photoanodes are suitable for PEC cell application. As well, used simple, economical method has great potential for synthesis of various thin film materials.  相似文献   

18.
Different compositions of amorphous Ge15Se85-xCux thin films were deposited onto glass substrates by the thermal evaporation technique. Their amorphous structural characteristics were studied by X-ray diffraction (XRD). The optical constants (n, k) of amorphous Ge15Se85-xCux thin films were obtained by fitting the ellipsometric parameters (ψ and Δ) data for the first time using three layers model system in the wavelength range 300–1100 nm. It was found that the refractive index, n, increases with the increase of Cu content. The possible optical transition in these films is found to be indirect transitions. The optical energy gap decreases linearly from 1.83 to 1.44 eV with increasing the Cu. The experimental transmittances spectrum can be simulated using the thickness and optical constants modeled by spectroscopic ellipsometry model.  相似文献   

19.
Multilayered nanostructured TiO2 thin films were prepared by sol–gel and dipping deposition on quartz substrate followed by thermal treatment under reducing atmosphere (20 %H2–80 %Ar). Heat treatment at progressively higher temperatures caused structural, morphological, and optical changes, which were investigated by X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, and UV–Vis spectroscopy. The conductivities of the thin films were also measured by 4-point probe method. The XRD results showed that the calcined TiO2 thin films consist of single anatase phase which was completely transformed into rutile phase after heat treatment at 1,000 °C. The grains of films grew by intra-agglomerate densification after heat treatment at higher temperatures. The root mean square roughness of the samples was found to be in the range of 0.58–3.36 nm. The partially reduced TiO2 samples have red-shifted transmittance bands due to new energy band formed by oxygen vacancies. The electrical conductivity of the films was also enhanced after heat treatment in reducing atmosphere.  相似文献   

20.
A detailed study, involving the synthesis of a single-source precursor containing two metal ions sharing the same crystallographic site, has been undertaken to elucidate the use of such a single-source precursor in a CVD process for growing thin films of oxides comprising these two metals, ensuring a uniform composition and distribution of metal ions. The substituted complexes Cr1−xAlx(acac)3, where acac = acetylacetonate, have been prepared by a co-synthesis method, and characterized using UV–Vis spectroscopy, TGA/DTA measurements, and single crystal X-ray diffraction at low temperature. All the studied compositions crystallize in the monoclinic space group P21/c with Z = 4 in the unit cell. It was observed that the ratio (Al:Cr) of the site occupancy for the metal ions, obtained from single crystal refinement, is in agreement with the results obtained from complexometric titrations. All the solid state structures have the metal in an octahedral environment forming six-membered chelate rings. M–O acac bond lengths and disorder in the terminal carbon have been studied in detail for these substituted metal–organic complexes. One composition among these was chosen to evaluate their suitability as a single-source precursor in a LPMOCVD process (low-pressure metal–organic chemical vapour deposition) for the deposition of a substituted binary metal oxide thin film. The resulting thin films were characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号