首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
汤宇磊  杨复沫  詹宇 《中国环境科学》2019,39(12):4950-4958
为深入了解四川盆地PM2.5与PM10污染情况,通过机器学习的方法,基于卫星遥感气溶胶产品(MAIAC)与国家环境空气质量监测网数据以及气象、地理、社会经济变量等,构建2个随机森林机器学习模型(R2均为0.86),反演四川盆地2013~2017年间1km网格逐日PM2.5与PM10浓度时空分布,并分析两者的时空关联性.结果表明:2013~2017年四川盆地地面PM2.5与PM10平均浓度分别为47.8,75.2μg/m3.PM2.5与PM10浓度空间上均整体呈现"倒月牙"状分布,西部与南部区域浓度值较高.5a间,区域颗粒物浓度逐年递减,总降幅均达到27%,季节上则均具有"冬高夏低"的特点;PM2.5与PM10浓度空间相关性显著(相关系数0.96),呈现"内强外弱"的格局,春夏季相关系数(0.91、0.90)低于秋冬季(0.96、0.96).盆地西南部PM2.5与PM10比值较高,比值高低的季节性排序为冬季 > 秋季 > 夏季 > 春季.  相似文献   

2.
为了解“十三五”期间天津市PM2.5减排效果,基于2015~2020年不同大气污染治理措施的减排量核算结果,利用空气质量模型和高时空分辨率PM2.5监测数据,对“十三五”期间天津市PM2.减排效果进行分析.结果表明,2015~2020年,天津市SO2、 NOx、 VOCs和PM2.5的排放量分别减少4.77×104、 6.20×104、 5.37×104和3.53×104t,其中工艺过程、散煤和电力治理对SO2的减排贡献大,工艺过程、电力和钢铁治理对NOx的减排贡献大,工艺过程对VOCs的减排贡献最大,工艺过程、散煤和钢铁治理对PM2.5的减排贡献大.“十三五”期间天津市PM2.5浓度平均值、污染天数和重污染天数明显下降,分别较2015年下降31.4%、 51.2%和60.0%;与前...  相似文献   

3.
北京市平原区裸露地风蚀扬尘排放量   总被引:1,自引:0,他引:1  
以北京市平原区为研究对象,基于美国国家航空航天局(NASA)的陆地卫星(Landsat系列)遥感资料,设计算法批量提取裸露地信息,并结合通用扬尘排放模型,计算估计北京市平原区的裸露地风蚀扬尘源中PM10、PM2.5的排放系数及年排放量,建立了北京市各区的裸露地风蚀扬尘排放清单.研究表明,1987~2016年间北京市平原区裸露地面积减小了约600km2;风蚀扬尘最严重的地区为大兴区,其次为通州区;以气候年均值为参数计算获得,2016年北京平原区裸露地由于风蚀扬尘效应产生的PM10年排放量为7591.7t,这一排放量与前人研究估算的北京裸地风蚀扬尘PM10排放量较为接近.在此基础上,进一步引入月和季度尺度气候参数,并对模型进行改进,探讨了逐月和季度累计的扬尘排放结果.进一步的研究表明:北京市平原区裸露地面积具有显著季节变化特征,2月裸露地面积最大,可达4500km2,8月最小为500km2;基于月气候参数和季度气候参数结合每月卫星资料反演获得的裸地面积估算,逐月累计的PM10年排放量可达55175t,分季度累计PM10年排放量为39294t.这说明当前常采用的裸地扬尘估算方法,由于扬尘排放模型的气候参数采用年均值,忽视了风蚀过程的季节差异,将会导致裸地风蚀扬尘的极大低估.  相似文献   

4.
运用课题组自主开发的空气颗粒物风蚀源排放清单构建模型软件(PMEI-WES),估算2016年天津市郊区土壤风蚀源颗粒物排放清单.采用蒙特卡罗模拟,分析了主要气象参数和土壤参数输入不确定性对排放量的影响,量化排放清单的不确定性.结果表明:2016年天津市郊区土壤风蚀源PM10排放总量为22025.1731t.风速是影响排放量的最主要参数,排放量随风速增加呈指数增长,土壤碳酸钙与排放量呈正相关关系,土壤有机质与排放量呈负相关关系.排放总量95%概率范围为(15237.7581t,37434.8873t),不确定度为(-37.48%,53.60%);90%概率范围排放量为(16111.8606t,36104.7554t),不确定度为(-33.89%,48.14%).各区排放量不确定度大小与风速误差大小最显著.土壤参数对不确定度极值的影响较大.  相似文献   

5.
环境持久性自由基(EPFRs)是相对传统短寿命自由基提出的一种半衰期较长的新型环境风险物质,可将O2分子转化为活性氧物质,从而危害人体健康.为研究2018年西安市大气PM2.5中EPFRs的种类、浓度及其来源,本文利用电子顺磁共振波谱方法对2018全年的大气PM2.5样品进行EPFRs分析.结果表明:2018年西安市PM2.5中EPFRs年平均大气浓度为2.16×1014spins/m3,范围为6.27×1012~1.07×1015spins/m3,呈现冬季>秋季>夏季>春季的季节变化特征.按照EPFRs年平均浓度计算出西安市民每人每天吸入体内EPFRs的量相当于7支香烟,而在冬季雾霾天气高达35支香烟.西安市PM2.5中EPFRs的年平均g因子为(2.0034±0.0002),说明其可能主要是以碳为中心的自由基.相关性结果发现EPFRs与SO2和NO2显著相关,说明煤炭燃烧源和交通源可能是西安市PM2.5中EPFRs的重要来源.  相似文献   

6.
北京市交通扬尘PM2.5排放清单及空间分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为建立一种自下而上的交通扬尘PM2.5排放清单方法,对北京市不同区域、不同类型道路的路面积尘负荷进行了采样和实验室分析,对各类路网的道路车流量和车辆类型进行了调查和统计,建立了北京市道路交通扬尘PM2.5排放清单,并对其空间分布进行了分析. 结果表明:北京市城区快速路、主干道、次干道、支路和胡同的交通扬尘PM2.5排放因子分别为(0.05±0.03)(0.09±0.05)(0.11±0.05)(0.16±0.14)和(0.27±0.20)g/(km·辆),相应各类型道路的交通扬尘PM2.5排放强度分别为(7.21±4.66)(5.27±3.03)(3.34±1.49)(2.84±2.49)和(0.54±0.40)kg/(km·d);郊区高速路、国道、省道、县道、乡道和城市道路的交通扬尘PM2.5排放因子分别为(0.10±0.03)(0.50±0.33)(0.39±0.37)(0.41±0.41)和(0.65±0.31)(0.19±0.08)g/(km·辆),各类型道路交通扬尘的PM2.5排放强度分别为(3.82±1.31)(10.00±6.58)(3.93±3.74)(1.64±1.63)(0.65±0.31)和(0.74±0.32)kg/(km·d). 北京市道路交通扬尘PM2.5的年排放量为13 565 t,从空间分布上看,郊区交通扬尘PM2.5年排放量、单位道路长度排放量以及排放因子均高于市区,而城区单位行政区面积的交通扬尘PM2.5排放量高于远郊区县. 从交通扬尘PM2.5排放的空间分布特征看,在继续加强城区交通扬尘控制的同时,应采取措施控制远郊区县公路的扬尘排放. 自下而上的交通扬尘PM2.5排放清单提高了排放的时空分辨率,能够识别路网中高排放的区域和路段,为交通扬尘总量管理和减排目标考核提供了一种技术手段.   相似文献   

7.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.   相似文献   

8.
青岛环境空气PM10和PM2.5污染特征与来源比较   总被引:9,自引:1,他引:8  
年分别在青岛设6个和2个采样点采集PM10和PM2.5样品,分析二者质量浓度及颗粒物中多种无机元素、水溶性离子和碳等组分的质量浓度,以研究PM10及PM2.5的污染特征. 采用CMB-iteration模型估算法,确定一次源类及二次源类对PM10和PM2.5的贡献,利用统计学方法比较PM10和PM2.5的污染源. 结果表明:青岛大气颗粒物质量浓度季节变化显著,表现为春、冬季高,夏、秋季低;Na、Mg、Al、Si、Ca和Fe元素主要富集在PM10中,SO42-、NO3-、EC和OC主要富集在PM2.5中;城市扬尘、煤烟尘、建筑水泥尘及海盐粒子等粗粒子在PM10中的分担率较PM2.5中的高,分担率分别为28.7%、17.2%、7.16%及4.47%;二次硫酸盐、二次硝酸盐、机动车尾气尘及SOC(二次有机碳)等在PM2.5中的分担率较PM10中的高,分担率分别为19.3%、8.97%、13.7%及6.07%;由PM10与PM2.5化学组分的分歧系数可见,春、秋季PM10和PM2.5化学构成存在一定差异,而冬、夏季二者的化学构成相似.   相似文献   

9.
重庆主城区大气PM10及PM2.5来源解析   总被引:8,自引:0,他引:8       下载免费PDF全文
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主.   相似文献   

10.
张勇  陈骥  张锋 《中国环境科学》2020,40(1):100-108
基于我国2000~2017年食用菌年产量数据,采用排放因子法估算了菌糠露天焚烧的污染物排放量,利用Mann-Kendall法和聚类分析法分析了排放量的时空分布特征,使用回归分析法预测了污染物的排放趋势.结果表明:(1)2000~2017年全国菌糠露天焚烧污染物排放量持续上升,PM2.5、CO2、CO、CH4、NMVOCs、PAHs、NOx、SO2累积排放量分别为1.40×106,3.48×108,1.99×107,8.43×105,2.08×106,3.00×104,6.34×105,8.29×104t;(2)污染物排放量较高的省区包括山东、黑龙江、浙江、湖南、江苏、福建和河南,排放量较低的省区包括贵州、宁夏、天津、北京、新疆、重庆、甘肃;(3)预计2021年菌糠焚烧污染物总排放量高达4.25×107t,其对生物质焚烧污染物总排放量的贡献率约为19.82%.我国菌糠露天焚烧污染物排放规模较大,应予以重点关注.  相似文献   

11.
根据调查收集到的2015年四川省工程机械、农业机械、铁路机车、船舶和民航飞机的保有量、活动水平等数据,采用"排放因子法"计算了非道路移动源大气污染物排放量,分析了2015四川省非道路移动源的尾气污染排放特征,并建立了3km×3km的网格化排放清单.结果表明,2015年四川省非道路移动源排放的PM10为1.38×104t,PM2.5为1.25×104t,NOx为1.83×105t,THC为2.98×104t,CO为1.21×105t.工程机械对污染物的贡献率相对较高,占比达到70%;其次为农业机械,对NOx和PM的贡献占比分别达到15%.工程机械和农业机械的排放主要集中在夏季和秋季,而飞机、铁路机车和船舶的时间变化较不明显;而从空间分布来看,高排放源主要分布于成都平原地区和川南地区.  相似文献   

12.
东北地区农业源一次颗粒物排放清单研究   总被引:3,自引:0,他引:3  
采用自下而上的清单编制方法,搜集各农业环节(秸秆燃烧、整地、收割、谷物处理、化肥施用、农机排放、风蚀)排放因子、作物面积和耕作方式等信息,编制了2010年东北地区县级尺度的农业一次颗粒物(PM10和PM2.5)排放清单,并分析了农业源颗粒物排放的时空分布特征.结果表明:1)2010年东北地区农业源一次颗粒物PM10总排放量54.6万t,PM2.5总排放量35.6万t;2)东北地区农业源一次颗粒物PM10排放量最大的农业活动环节是秸秆燃烧,占农业源总排放量的比例为60%,秸秆燃烧排放PM2.5占PM2.5农业源排放量的87%,整地环节是一次颗粒物排放的第2大农业排放源,对农业源排放PM10和PM2.5总量的贡献率分别是27%和6%; 3)PM10和PM2.5的排放强度空间分布表明,东北地区农业源颗粒物排放区域集中在黑龙江省东北部和中部地区,吉林省中部和辽宁省中部地区; 4)PM10和PM2.5排放的时间变化特征显示,PM10农业源排放年变化曲线中,5月份和9、10月份是农业源排放一次颗粒物PM10较多的月份,PM2.5排放集中在9、10月份;5)本研究估算的污染物排放清单的不确定性为184.3%.未来的工作将侧重于典型农业区本土排放因子测定,从而有效减小排放清单的不确定性.  相似文献   

13.
京津冀大气污染传输通道城市燃煤大气污染减排潜力   总被引:1,自引:0,他引:1  
以京津冀大气污染传输通道城市为研究对象,建立了燃煤电厂、燃煤锅炉、农村散煤三大污染源主要大气污染物排放计算方法,以2015年为基准年,梳理现有燃煤污染减排政策措施,对2017年“2+26”城市燃煤污染源SO2、NOx、PM、PM10、PM2.5的减排潜力进行了分析.结果表明:实施燃煤电厂超低排放改造、燃煤锅炉淘汰或改造、散煤改电(气)等措施后,“2+26”城市2017年燃煤SO2、NOx、PM、PM10、PM2.5排放量分别达到87×104t、56×104t、64×104t、45×104t、32×104t,预计比2015年分别减少44%、48%、33%、32%、30%.燃煤电厂、燃煤锅炉、农村散煤替代各项污染物减排比例分别在55%~70%、31%~38%、18%~21%,未来农村散煤治理的减排潜力还较大.从各城市情况来看,多数城市燃煤SO2、NOx减排主要来自燃煤电厂超低排放改造;保定、廊坊等城市燃煤颗粒物减排量较大,得益于散煤治理工作的大力推进.  相似文献   

14.
京津冀及周边地区水泥工业大气污染控制分析   总被引:1,自引:0,他引:1  
以京津冀及周边地区水泥工业为研究对象,基于产排污系数法,建立了水泥工业主要大气污染物排放计算方法,对2016年该地区水泥工业主要大气污染物排放控制水平进行了分析.结果表明:京津冀及周边地区2016年水泥工业SO2、NOx、PM(有组织)排放量分别达到3.2×104t、23.9×104t、9.7×104t,较2015年分别减少24.1%、18.2%、27.2%,各项污染物大幅下降.水泥工业PM无组织排放量占PM总排放量的45.4%,仍需要采取集中收集的方式加强治理.山东、河南是水泥工业SO2、NOx、PM、PM10、PM2.5重点排放来源,应通过化解过剩产能降低污染排放.从各工艺来看,新型干法工艺应考虑采用高效脱氮脱硫技术、协同处置技术、高效大型袋式除尘技术等新技术,进一步降低各项污染物的排放量;粉磨站也需进一步提高污染治理水平.  相似文献   

15.
以黑龙江省为例,采用排放因子法计算了2016年秸秆露天焚烧污染物排放清单,分析了污染物的时空分布特征.结果表明,黑龙江省秸秆露天焚烧各污染物排放量为:CO2 1314.09万t、CO 41.92万t、CH4 3.77万t、NMVOCs 8.35万t、NH3 0.65万t、BC 0.44万t、OC 3.13万t、SO2 0.50万t、NOX 3.28万t、PM10 8.81万t、PM2.5 10.14万t.在95%的置信区间确定了排放清单的不确定性,不确定性范围为NOX的±86%的低值到CO的±187%的高值.通过可靠性分析推断,本文的排放清单是合理的.玉米和水稻秸秆露天焚烧对同种大气污染物的贡献高于其他作物秸秆.大气污染物排放高值区位于黑龙江省西部和东部,污染物排放的时段在全年范围内具有明显的双峰特征.秸秆露天焚烧率的下降能有效促进大气污染物的减排,且农垦地区集约化和规模化的管理模式能有效控制秸秆露天焚烧.  相似文献   

16.
利用区域空气质量模式WRF-Chem,对亚洲季风气候变化背景下云南省蒙自市大气环境容量进行模拟评估.根据标准化南亚夏季风指数分别选取2005年和2015年为强、弱季风年.对2015年四季(以1月、4月、7月和10月为代表月)和2005年夏季(7月为代表月)的主要大气污染物浓度进行模拟.结果表明蒙自市2015年全年CO、NO2、SO2、PM2.5、PM10的大气环境容量分别为120.31、1.127、1.875、1.267、1.688(×104t/a),其中各污染物冬季大气环境容量最小,春季的最大(PM10除外),且PM2.5在冬季排放量已饱和.强季风年相对弱季风年夏季CO、NO2、SO2、PM2.5、PM10的大气环境容量分别提升4.81%、3.86%、12.6%、18.4%、8.7%,其中PM2.5的容量提升最高.亚洲季风年际变化对云南高原空气质量及大气环境容量具有重要的调制作用.  相似文献   

17.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

18.
采用全球多区域投入产出(MRIO)模型耦合二氧化硫(SO2)、氮氧化物(NOx)、可吸入颗粒物(PM10)、非甲烷挥发性颗粒物(NMVOC)排放清单,定量分析了2012年中国与其他国家贸易过程中隐含的大气污染排放转移.结果显示,中国是隐含SO2、NOx、PM10排放的输出地和隐含NMVOC排放的输入地.欧盟、东亚和美国购买我国商品(如电力燃气和水供应业、重工业和矿采选业)导致的出口隐含大气污染排放量占比约为70%.中国在消耗撒哈拉以南非洲地区、中东&北非、东亚、东南亚和欧盟进口商品过程中,导致上述地区排放NMVOC为3.1×106t,约占我国进口隐含NMVOC排放的69.2%.为了减轻我国对外贸易中承担的环境负担,本文从加强重污染产业管控、发展绿色经济、推进全球绿色供给链等方面提出相关政策建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号