首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了广播信道分布式干扰消除算法的性能,提出了一种基于动态功率分配的多天线广播干扰信道对齐算法.该算法利用多用户多天线干扰信道相关矩阵的迹来计算分配功率,并采用最大化码流信干噪比的方法来得到预编码矩阵和接收滤波器矩阵.数值仿真表明,该动态功率分配算法与等功率分配算法相比,尽管低负荷下干扰对齐后的平均信干噪比增益不明显,但中、高负荷下其干扰对齐后的平均信干噪比大幅提高,特别是高负荷下可以解决等功率方法存在的信干噪比瓶颈效应.由于低负荷的应用需求并不强烈,因而该算法是一种实用的广播信道干扰消除方法.  相似文献   

2.
This paper develops bit and power allocation schemes with beamforming for multi-cell orthogonal frequency division multiplexing (OFDM) systems on uplink. The model of the multi-cell channel with frequency reuse is considered. The transmit signal from each mobile causes interference to the received signals of other base stations. The schemes aim to minimise the total mobile transmit power while satisfying the required data rate and the bit error rate (BER) of each mobile. The proposed schemes offer better performance than that of the fixed bit allocation method. The proposed distributed allocation scheme reduces computational complexity compared to the proposed centralised multi-user greedy method with insignificant performance degradation. The simulation results are presented to demonstrate the efficacy of the proposed schemes.  相似文献   

3.
邱晶  张平 《高技术通讯》2005,15(6):14-18
研究了采用TDMA接入方式的无线分组网络上行信道时隙分配策略,基于移动台的QoS要求,提出了一种自适应时隙分配算法。利用服务曲线对移动台的QoS要求进行了建模。算法的目标是在尽量满足所有移动台Qos要求的基础上提高系统的上行吞吐量。在无法满足所有移动台QoS要求的情况下,使得移动台实际发送的数据与满足服务曲线要求之间的偏差最小。仿真结果表明:该算法能够在系统吞吐量和系统偏差之间进行折衷,从而有效地平衡上述两个目标。  相似文献   

4.
One of the most effective technology for the 5G mobile communications is Device-to-device (D2D) communication which is also called terminal pass-through technology. It can directly communicate between devices under the control of a base station and does not require a base station to forward it. The advantages of applying D2D communication technology to cellular networks are: It can increase the communication system capacity, improve the system spectrum efficiency, increase the data transmission rate, and reduce the base station load. Aiming at the problem of co-channel interference between the D2D and cellular users, this paper proposes an efficient algorithm for resource allocation based on the idea of Q-learning, which creates multi-agent learners from multiple D2D users, and the system throughput is determined from the corresponding state-learning of the Q value list and the maximum Q action is obtained through dynamic power for control for D2D users. The mutual interference between the D2D users and base stations and exact channel state information is not required during the Q-learning process and symmetric data transmission mechanism is adopted. The proposed algorithm maximizes the system throughput by controlling the power of D2D users while guaranteeing the quality-of-service of the cellular users. Simulation results show that the proposed algorithm effectively improves system performance as compared with existing algorithms.  相似文献   

5.
Acquiring good throughput and diminishing interference to primary users (PU) are the main objectives for secondary users in a cognitive radio (CR) network. This paper proposes a centralized subcarrier and power allocation scheme for underlay multi-user orthogonal frequency division multiplexing considering the rate loss and the interference those the PU can tolerate. The main purpose of the proposed scheme is to efficiently distribute the available subcarriers among cognitive users to enhance both the fairness and the throughput performance of the cognitive network while maintaining the QoS of primary users. Simulation results show that the proposed scheme achieves a significantly higher CR network throughput than that of the conventional interference power constraint (IPC) based schemes and provides a significantly enhanced fairness performance. Also, contrary to the conventional IPC based schemes, the proposed scheme is able to significantly increase the achieved throughput as the number of CR users increases.  相似文献   

6.
In this paper, we investigate an optimised transmitter pre-filtering technique for downlink time-division-duplex (TDD) code division multiple access (CDMA) communications, which employs the conventional matched filter (MF) detector at the mobile receivers. The proposed pre-filtering technique eliminates the multiple-access interference and intersymbol interference (MAI/ISI) effects by applying a very simple transmission scheme that combines a signal transformation with a cyclic prefix strategy under a power constraint condition. Two constrained pre-filtering transformations are suggested depending on the information required at the mobile unit. An open-loop transmitter pre-filtering is first formulated; however, this solution does not consider the properties of the noise at the mobile receiver. A second solution is then presented via a closed-loop transmitter pre-filtering that includes an optimum gain for a given transmit and noise power. Some associated issues such as system efficiency, computational complexity and channel estimation errors are also addressed. Simulation results show that the proposed transmitter pre-filtering scheme can be used to increase the system performance and capacity. In addition, its performance is compared with another similar transmit pre-processing scheme in order to evaluate the performance improvement by the proposed algorithm.  相似文献   

7.
A block-spreading code division multiple access (BS-CDMA) system is proposed for broadband uplink transmission, giving rise to a significantly improved multiuser performance without using complex multiuser detection techniques. This is because the code orthogonality is easily maintained when channel variation across the consecutive blocks, in a block-by-block high-speed transmission, is negligible. The proposed system uses frequency domain equalisation at the receiver to combat multipath interference efficiently over frequency selective fading channels. We propose despreading before equalisation, which reduces the frequency domain process to symbol-wise operation. A cell-specific scrambling code is employed to suppress other-cell interference for uplink transmission in a multicell system. Our analytical and simulation studies show that the proposed BS-CDMA system has superior multiuser performance over the conventional direct sequence CDMA and cyclic prefix CDMA systems for uplink transmission.  相似文献   

8.
Non-orthogonal multiple access (NOMA) has been seen as a promising technology for 5G communication. The performance optimization of NOMA systems depends on both power allocation (PA) and user pairing (UP). Most existing researches provide sub-optimal solutions with high computational complexity for PA problem and mainly focuses on maximizing the sum rate (capacity) without considering the fairness performance. Also, the joint optimization of PA and UP needs an exhaustive search. The main contribution of this paper is the proposing of a novel capacity maximization-based fair power allocation (CMFPA) with low-complexity in downlink NOMA. Extensive investigation and analysis of the joint impact of signal to noise ratio (SNR) per subcarrier and the channel gains of the paired users on the performance of NOMA in terms of the capacity and the user fairness is presented. Next, a closed-form equation for the power allocation coefficient of CMFPA as a function of SNR, and the channel gains of the paired users is provided. In addition, to jointly optimize UP and PA in NOMA systems an efficient low-complexity UP (ELCUP) method is proposed to be incorporated with the proposed CMFPA to compromise the proposed joint resource allocation (JRA). Simulation results demonstrate that the proposed CMFPA can improve the capacity and fairness performance of existing UP methods, such as conventional UP, and random UP methods. Furthermore, the simulation results show that the proposed JRA significantly outperforms the existing schemes and gives a near-optimal performance.  相似文献   

9.
Future wireless networks demand high spectral efficiency, energy efficiency and reliability. Cooperative non-orthogonal multiple access (NOMA) with simultaneous wireless information and power transfer (SWIPT) is considered as one of the novel techniques to meet this demand. In this work, an adaptive power allocation scheme called SWIPT based adaptive power allocation (SWIPT-APA-NOMA) is proposed for a power domain NOMA network. The proposed scheme considers the receiver sensitivity of the end users while calculating the power allocation coefficients in order to prevent wastage of power allocated to user in outage and by offering priority to any one of the users to use maximum harvested power. A detailed analysis on the bit error rate (BER) performance of the proposed scheme is done and closed form expression is obtained. Simulations have been carried out with various parameters that influence the receiver sensitivity and the results show that the network achieves better outage and BER performance using the proposed scheme. It is found that the proposed scheme leads to a ten-fold decrease in transmit power for the same error performance of a fixed power allocation scheme. Further, it offers 96.06% improvement in the capacity for a cumulative noise figure and fading margin of 10 dB.  相似文献   

10.
Most of existing work on resource allocation in TDMA and OFDMA systems assumes the availability of perfect channel state information (CSI) at the transmitter, which is rarely possible due to feedback delay and channel estimation error. In this paper, we study the effect of feedback delay and channel estimation error on margin adaptive resource allocation in a downlink OFDMA system. By using convex optimization framework, we find an optimal solution to the problem. First, we study the individual effect of feedback delay and channel estimation error on resource allocation by considering them exclusively. Then, we consider the simultaneous presence of feedback delay and channel estimation error and study their combined effect on resource allocation. We derive an explicit close form expression for the users’ transmit power and propose an algorithm for power and subcarriers allocation for each of these three scenarios. The algorithms have polynomial complexities and solve the problem with zero optimality gaps. Simulation results show that the system performance is very sensitive to feedback delay and is affected significantly by imperfect channel estimation. Our proposed algorithms highly improve the system performance in the availability of only imperfect CSI at the transmitter.  相似文献   

11.
Vertical Bell Labs layered space time-orthogonal frequency division multiplexing (VBLAST-OFDM) systems can achieve high spectral efficiency in quasi-stationary links and with channel state information (CSI) matrix knowledge. Owing to the high speeds of nodes in vehicle ad hoc network (VANET), the channel is fast fading thus raising the need for channel tracking. Furthermore, inter-carrier interference (ICI) causes an error floor at high signal-to-noise ratio (SNR) even with perfect CSI knowledge. In this paper we investigate channel tracking and ICI mitigation for VBLAST-OFDM. The analysis of ICI shows that it increases with speed, number of subcarriers and/or number of transmit antennas. The authors then introduce a simple channel tracking algorithm for VBLAST-OFDM. Simulation results show that our algorithm reduces the bit error rate (BER) of a 2 x 4 VBLAST system by 1022 at 40 dB SNR and 100 km/h speed compared to obtaining a channel estimate from a training sequence only. The change in the channel response is estimated using the channel tracking algorithm and then passed to an ICI equaliser to enhance performance and reduce the error floor caused by ICI at high SNR. Equalising five pairs of subcarriers gives 4 dB improvement for 2 x 4 VBLAST at 180 km/h relative speed. The performance is enhanced as more subcarriers are included in the ICI equaliser at the expense of increased receiver complexity.  相似文献   

12.
水声信道是一个时变的双扩散信道,不仅会引起传输信号的时频扩展,而且会造成严重的信息损失。由于滤波器组多载波/交错正交幅度调制(Filter Bank Based Multicarrier/Offset Quadrature Amplitude Modulation, FBMC/OQAM)系统可通过改变发送信号的成型脉冲来减小时频扩展带来的符号干扰和子载波干扰,因此更适合快速时变的水下声信道。为了降低现有成型脉冲设计算法的优化难度,提出了一种快速且易于实现的成型脉冲设计方法,该方法根据信道时频统计特性对扩展高斯函数(Extend Gaussian Function, EGF)进行了优化,实现了期望信号能量最大化,并在时域符号间加入适当的保护间隔,进一步增强了抗多途干扰的能力。仿真结果表明,无论在高频散信道还是在低频信道下,相比于其它成型脉冲算法,该算法在降低计算量的同时,改进了的FBMC/OQAM系统的传输性能,误码率降低了2~3 dB。  相似文献   

13.
在多用户正交频分复用(OFDM)系统中设计一种新颖的子载波-功率分配方法来最大化用户数据传输速率.这个方案分成两部分,子载波分配和功率分配.其中,子载波分配方法是在信道容量矩阵中将信道容量最好的子载波首先进行分配,功率分配采用注水方法.研究和模拟结果表明,该算法在只改变各个子载波增益系数的基础上,基本保持了较低的复杂度,并且极大地提高了用户数据传输速率.  相似文献   

14.
With the rapid development of Internet technology, users have an increasing demand for data. The continuous popularization of traffic-intensive applications such as high-definition video, 3D visualization, and cloud computing has promoted the rapid evolution of the communications industry. In order to cope with the huge traffic demand of today’s users, 5G networks must be fast, flexible, reliable and sustainable. Based on these research backgrounds, the academic community has proposed D2D communication. The main feature of D2D communication is that it enables direct communication between devices, thereby effectively improve resource utilization and reduce the dependence on base stations, so it can effectively improve the throughput of multimedia data. One of the most considerable factor which affects the performance of D2D communication is the co-channel interference which results due to the multiplexing of multiple D2D user using the same channel resource of the cellular user. To solve this problem, this paper proposes a joint algorithm time scheduling and power control. The main idea is to effectively maximize the number of allocated resources in each scheduling period with satisfied quality of service requirements. The constraint problem is decomposed into time scheduling and power control subproblems. The power control subproblem has the characteristics of mixed-integer linear programming of NP-hard. Therefore, we proposed a gradual power control method. The time scheduling subproblem belongs to the NP-hard problem having convex-cordinality, therefore, we proposed a heuristic scheme to optimize resource allocation. Simulation results show that the proposed algorithm effectively improved the resource allocation and overcome the co-channel interference as compared with existing algorithms.  相似文献   

15.
针对正交频分多址接入(OFDMA)系统的子载波分配问题,提出了一种基于预期容量损失的分配算法,该算法将子载波的联合分配分解为逐次分配以降低复杂度.每次分配时,该算法利用多用户频率选择性信道的特性,将用户在不同子载波上的速率差值作为每次分配中预期容量损失的度量,优先对预期容量损失最大的用户分配子载波,以期避免由逐次分配的非最优性导致的系统容量损失.理论分析和仿真结果表明,此算法能够在低复杂度的条件下得到近似最优解,在保证用户服务质量的同时,有效地提高了系统容量.  相似文献   

16.
In adaptive time division duplex (ATDD) wireless systems, severe co-channel interference conditions can occur if the movable downlink/uplink (UL) TDD boundary is not synchronised among all frames in base stations. To reduce interference outage and to improve a system's spectral efficiency, a new single frequency cell (SFC) network architecture is proposed, which allows for distributed boundary synchronisation (DBS) via inter-sector signalling. SFC-DBS dynamically synchronises TDD boundaries among neighbouring sectors for each frame, thus avoiding sector-to-sector interference, while preserving the ATDD radio resource assignment efficiency. Analysis shows that SFC-DBS achieves an additional 6-11 dB in the average UL signal-to-interference ratio, compared with existing channel assignment schemes, which corresponds to 25-50 % capacity gain subject to traffic asymmetry in different sectors. More importantly, the proposed SFC scheme does not incur any further cost in the frequency planning, whereas the DBS scheme requires only minor system modifications. Compared with interference cancellation via antenna arrays and beamforming, SFC-DBS achieves similar performance, albeit without the cost for complex radio transceivers and multiple antenna elements.  相似文献   

17.
The demand for mobile uplink traffic has increased significantly in the past few decades with the development of the Internet of Things (IoT) and mobile Internet. This has subsequently imposed challenges on 5G networks to provide high spectral efficiency and low-power massive connectivity. Non-orthogonal multiple access (NOMA) is a viable alternative to the current state-of-the-art orthogonal multiple access (OMA) techniques to address the challenges in 5G systems. In addition, a power control (PC) mechanism to mitigate the effect of interference between users can be accommodated to improve network performance. In this paper, we discuss the basic principles, key features, and strengths/weaknesses of the various power domain NOMA schemes. Moreover, we propose an uplink PC scheme for the users of a power domain NOMA network. The proposed PC method makes use of the evolutionary game theory (EGT) model to adaptively adjust the transmitted power level of the users which helps in mitigating user interference. A successive interference cancellation (SIC) receiver is applied at a base station (BS) in order to separate the users’ signals. By performing simulations, we show that the proposed EGT-based PC scheme achieves higher network efficiency, spectral efficiency, and energy efficiency.  相似文献   

18.
Peng  M. Wang  Y. Wang  W. 《Communications, IET》2007,1(5):999-1006
Infrastructure wireless mesh network, also named as mesh router, is one key topology for the next generation wireless networking. In this work, the performance optimisation for the infrastructure wireless mesh network is presented and the sub-optimum solution mechanism is investigated. A cross-layer design for tree-type routing, level-based centralised scheduling and distributed power control theme is proposed as the sub-optimum solution strategy. The cross-layer design relies on the channel information and the distributed transmission power control in the physical layer, and the wireless scheduling in the medium access control (MAC) layer, as well as the routing selection mechanism in the MAC upper layer. In this work, a modified distributed power control algorithm is proposed first. In addition, a tree-type routing construction algorithm for centralised scheduling is presented to improve the network throughput by jointly considering interference and hop-count to construct the routing tree. Simulation results show that the proposed cross-layer design strategy can effectively improve the network throughput performance, decrease the power consumption and achieve better performances.  相似文献   

19.
IEEE 802.16j spreads out the coverage of WiMAX networks and strengthens wireless signal transmission using relay technology. To take advantage of relaying in IEEE 802.16j networks, an efficient scheduling schedule with quality of service (QoS) provision for multiple link transmissions is necessary, especially when link interference exists. In this paper, we propose an uplink scheduling mechanism in the transparent mode of IEEE 802.16j, which enables multiple devices to transmit without interference. The maximum latency of each connection has been considered in order to optimize the violation and transmission rate. An interference detection task is first carried out, and then a resource allocation algorithm and a dynamic frame adjustment method are developed. Two simulation experiments were conducted with different interference levels. The results demonstrate that under a fixed QoS type of connection, when the total number of connections goes up to 360 and 420 and the maximum latency violation rate approaches 20%, the average uplink transmission rate of the proposed mechanism can achieve 6.67 and 7.92 Mbps, which apparently outperform regular relay scheduling schemes with rate of 4 and 3.91 Mbps, respectively.  相似文献   

20.
周青  田亚男  沈建文 《声学技术》2017,36(6):528-532
水声信道中多途干扰严重,由多途效应引起的码间干扰是影响水声通信系统的关键性因素。单载波频域均衡(Single-Carrier Frequency Domain Equalization,SC-FDE)技术基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术提出,能有效对抗水声信道中的多途干扰,同时能避免OFDM技术峰值平均功率比高的不足。文中先介绍判决反馈均衡算法,并与其他均衡算法的抗多途性能进行比较。然后为提高系统均衡的可靠性和水声信道带宽利用率,对传统数据帧结构进行改进。将独特字(Unique Words,UW)序列均分,提高水声信道估计的精度,进而降低误码率,增加传输的可靠性;增加数据帧中有用信息符号,系统误码性能几乎不变,水声信道频带有效利用率提高。最后开展水池试验,验证了算法的有效性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号