首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
针对单一纳米颗粒电刷镀镀层综合性能存在的不足,利用电刷镀技术在45钢基材上制备含纳米WC和PTFE的镍基复合镀层。采用扫描电子显微镜观察电刷镀复合镀层的表面形貌和显微结构,球盘式摩擦磨损试验机测试其干摩擦条件下摩擦磨损性能,在pH=4浓度为0.05mmol/L的硫酸溶液中进行耐腐蚀性试验。结果表明:在镀液中添加不同含量纳米粒子,可以不同程度填补粒子之间的空缺,使镀层表面平整、光滑;含纳米WC和PTFE镍基复合镀层的耐磨损和耐腐蚀性能强于纯镍基镀层和45钢基体,这是由于纳米粒子细晶强化和弥散强化所致;当含1.5g/L纳米WC与7g/L纳米PTFE乳液的复合镀层耐磨损性能最佳;含1g/L纳米WC与5g/L纳米PTFE复合镀层的耐腐蚀性能较纯镍基复合镀层提高一倍;45钢的磨损机制是粘着磨损,纯镍基镀层的磨损机制是剥层磨损,纳米WC/PTFE镍基复合镀层的磨损机制是磨粒磨损。  相似文献   

2.
以性能独特的石墨烯量子点(GQDs)为第二相添加物,采用超临界电沉积技术制备Ni基纳米复合镀层,研究超临界条件下GQDs添加量对镀层的微观结构、显微硬度、耐磨性能、耐腐蚀性能等的影响。结果表明:加入GQDs,镀层微观结构致密化和均匀化。当GQDs添加量为1.5 g/L时,镀层表面形貌更为致密。X射线衍射分析显示,GQDs的添加,改变了复合镀层镍衍射面(111)、(200)及(222)峰位,在(111)面产生结晶择优取向。GQDs的添加大幅提升了复合镀层的各项性能。当GQDs添加量为1.5 g/L时,镀层显微硬度高达7381.4 MPa,比纯镍镀层显微硬度高近980 MPa;磨痕截面积为3336μm2,仅为纯镍镀层的44%。Tafel极化试验结果表明,腐蚀电流密度为3.55×10-6 A·cm-2,相较于纯镍镀层的10.07×10-6 A·cm-2,降低了65%;150 h浸泡腐蚀实验表明,当GQDs添加量为1.5g/L时,镀层点蚀最少,耐腐蚀性能最为优异。  相似文献   

3.
采用脉冲电沉积法制备了纳米WC强化镍基复合镀层。探究了表面活性剂(十二烷基硫酸钠,SDS)添加量以及WC粉的湿磨预处理对Ni/nano-WC复合镀层表面形貌、颗粒分布、微观结构以及显微硬度的影响。表面活性剂的添加和对WC粉湿磨处理有助于细化镀层晶粒,得到WC颗粒分布均匀的致密镀层。镀层中WC含量以及镀层的显微硬度随着表面活性剂的添加量的增加而增加,但过量会使效果变差,理想的SDS添加量为0.15 g/L,湿磨10 h。  相似文献   

4.
为改善Ti-5Al-1V-1Sn-1Zr-0.8Mo合金微弧氧化膜的耐磨和耐腐蚀性,向电解液中添加0-1.00g/L的氧化石墨烯制备微弧氧化膜。对微弧氧化膜的厚度、粗糙度、微观形貌及组成进行了表征,并对膜层的耐磨性及耐腐蚀性进行了测试分析。结果表明,随着氧化石墨烯加入量增加,氧化膜厚度从102.3 μm增加为115.3 μm,粗糙度从56.7 μm减少为32.9 μm;未加入氧化石墨烯时,膜层表面的微孔直径大小约为10-60 μm,且有大量微裂纹,随着氧化石墨烯的加入,微孔直径减小,在加入量为0.75 g/L和1.00 g/L时,微孔直径稳定于10-20 μm左右;XRD结果显示,加入氧化石墨烯后,膜层中的金红石相TiO2含量略有增加,磨损过程中膜层质量损失较未加入时有了显著的降低;加入0.75 g/L的氧化石墨烯后,膜层与基体合金的结合力最大,达到53.3 N,较未加入氧化石墨烯的膜层增加了6.2 N;经盐雾腐蚀480 h后,氧化石墨烯加入量为0.75 g/L和1.00 g/L的膜层具有更好的耐腐蚀性能。  相似文献   

5.
采用双脉冲复合电镀技术,在瓦特型镀液中,制备了含微/纳米SiC颗粒的Ni基复合镀层,研究镀液中纳米SiC添加量对复合镀层微观形貌、摩擦性能和抗氧化性能的影响。结果表明:在SiC颗粒(5μm)浓度为10 g/L的镀液中,添加纳米SiC和Ni-SiC复合镀层镍择优取向由晶面(200)转变为晶面(111);当SiC(40μm)浓度为4.0 g/L时,复合镀层显微硬度最大,为456 HV;复合镀层摩擦因数最小,平均值为0.28,为微米复合镀层的1/2;经900℃氧化100 h后,氧化质量增加为6.025 mg/cm2,为微米复合镀层的1/3。  相似文献   

6.
采用脉冲电沉积法制备了纳米WC强化镍基复合镀层。探究了不同表面活性剂(十二烷基硫酸钠)添加量以及WC粉的湿磨预处理对Ni/nano-WC复合镀层表面形貌、颗粒分布、微观结构以及显微硬度的影响。表面活性剂的添加和对WC湿磨处理有助于细化镀层晶粒,得到WC颗粒分布均匀的致密镀层。镀层中WC含量以及镀层的显微硬度随着表面活性剂的添加量的增加而增加,但过量会使效果变差,理想的SDS添加量为0.15g/l,湿磨10h。  相似文献   

7.
针对镍镀层硬度较低,限制了其应用范围的实际,采用纳米复合电镀,提高电镀镍层的机械性能.由于纳米微粒极易团聚,影响了复合镀层的性能.进行了Ni-纳米TiO2复合电镀的表面活性剂筛选,并优选出分散效果较好的阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和非离子表面活性剂吐温80进行均匀设计和正交回归设计的复配优化来研究其对复合镀层的影响,采用SEM观察镀层表面形貌.通过分析试验结果可知:两者复合的效果较单一使用的效果更好,在镀液中添加0.074g/L的CTAB和0.047g/L吐温80时,得到的复合镀层组织均匀细致,硬度达到最大值621.6HV.  相似文献   

8.
为了提高复合镀层的耐磨性、改善复合镀层的结合力、硬度,在不同的磁场强度和不同的金刚石添加量下进行了化学复合镀,于铜基体表面制备了一层镍-磷-金刚石复合镀层,然后对镀层性能进行表征。结果表明,金刚石粒子含量为2g/L^4g/L时,随着磁场强度的增大,镀层的厚度逐渐增大,而当金刚石粒子含量增加到6g/L时,镀层的厚度逐渐减小;金刚石含量4g/L时,镀层摩擦系数随磁场增大而降低;结合力在各金刚石含量下随磁场的增大先略微减小后大幅增加;各金刚石含量下镀层硬度随磁场的增大先增大后减小,磁场强度2.6m T、金刚石粒子含量为4g/L时最大。  相似文献   

9.
将氧化石墨烯置于镀镍液中,采用直流电沉积技术制备了镍基/石墨烯复合材料,并用拉曼光谱、X射线衍射分析了其结构。结果表明,电沉积过程中氧化石墨烯已经被还原为石墨烯,添加石墨烯后复合材料的择优生长取向从(200)变为了(111)。当氧化石墨烯的浓度在0.02~0.04 g/L范围时,复合材料的显微硬度随着浓度增加显著提高。石墨烯的引入可提高镍基/石墨烯复合材料的耐磨性;随着氧化石墨烯浓度的提高,镍基/石墨烯复合材料的耐磨性提高。当电流密度为1.8 A/dm2时,镍基/石墨烯复合材料表现出了最好的耐蚀性。  相似文献   

10.
李智  刘崇宇  葛毓立  宋万彤  胡德枫 《表面技术》2023,52(10):394-402, 421
目的 提高纳米金属陶瓷复合镀层硬度、耐磨性,以及耐蚀性。方法 在镀液中添加了氧化石墨烯(GO),在合金的基体上制备了Ni-TiN-GO的复合镀层,并对镀层组织结构、成分、显微硬度、耐磨性和耐蚀性进行表征及分析,探究GO的添加量对其组织性能的影响,确定最适宜的GO添加量。结果 最适宜GO含量为0.3 g/L,所得镀层表面平整致密,与基体结合良好,厚度为8.64 μm。晶面表现为双择优取向,晶粒尺寸最小,显微硬度最大,分别为22.8 nm和1 529.1HV。摩擦磨损测试表明摩擦因数为0.8,主要以磨粒磨损为主,具有良好耐磨性能。Ni-TiN-0.3g/LGO复合镀层自腐蚀电流密度较基体和Ni-TiN镀层下降1个数量级,在经过96 h的盐雾试验后,镀层未见开裂,只附着少量腐蚀产物,表现出良好的耐蚀性。结论 当GO的添加量为0.3 g/L时镀层表面最为致密,缺陷减少,并且通过其较大的比表面积可阻碍腐蚀离子通过,进而提高镀层耐蚀性。GO通过在镀液中与Ni2+结合形成复合物共沉积到孔隙缺陷处,同时GO弥散分布于镀层,提供了大量的形核位点,镀层晶粒尺寸下降,因此镀层硬度提高,并且由于GO具有一定自润滑能力,镀层的耐磨性提高。  相似文献   

11.
采用微弧氧化(MAO)技术,以硅酸盐为主要电解液成分,通过加入稀土元素铈以及石墨烯添加剂,在7050高强铝合金表面制备微弧氧化膜层。利用扫描电镜(SEM)、体视显微镜、X射线衍射仪(XRD)、摩擦磨损试验机以及电化学工作站研究微弧氧化陶瓷膜层的形貌、粗糙度、相组成和元素分布以及耐磨性和耐蚀性。结果表明:同时加入4 g/L CeO2和10 g/L的石墨烯制备的复合膜层表面微孔尺寸明显降低,结构致密,耐磨性较好,粗糙度最低(1516.03 nm),膜层主要由α-Al2O3和γ-Al2O3组成。且此时的复合膜层自腐蚀电位最大,自腐蚀电流最小,耐腐蚀性最佳。  相似文献   

12.
热喷涂Ni基复合涂层重熔处理的研究现状   总被引:1,自引:1,他引:0  
热喷涂Ni基复合涂层因具有耐磨、耐腐蚀及耐高温等特点,被广泛应用于机械零件的表面修复和保护。但是,热喷涂层为典型的层状结构,具有微缺陷含量较高、与基体结合强度低等特点,难以适应苛刻的工作环境,其应用和发展受限。重熔处理可以消除热喷涂层的层状结构,消除或部分消除孔隙、裂纹等微缺陷,使涂层与基体形成冶金结合,提高涂层的使用性能。本文首先介绍了几种适用Ni基复合涂层的重熔技术(即激光重熔、火焰重熔、感应重熔等),随后介绍了重熔处理对Ni基复合涂层表面完整性(即微缺陷、结合强度和硬度)的影响,接着分析了重熔处理对Ni基复合涂层两种服役性能(即耐磨性、耐腐蚀性能)的影响,最后总结了目前在关于Ni基复合涂层重熔技术研究中存在的问题,进而探讨了相应的解决方案,并指出挖掘新的表面重熔技术和对不同的材料体系进行针对性研究是未来重点发展的方向。  相似文献   

13.
王琪超  杜楠  王帅星  赵晴 《表面技术》2019,48(1):191-199
目的提高Ti6Al4V合金的摩擦学性能。方法在硅酸盐-磷酸盐电解液中添加不同浓度的纳米W粉,利用微弧氧化技术在Ti6Al4V基体表面制备出氧化陶瓷膜。利用FE-SEM、EDS和XRD研究了在不同浓度W粉参与下的微弧氧化膜表截面微观形貌、元素分布及膜层相组成。通过旋转摩擦磨损试验评估了膜层的摩擦学性能。结果电解液中加入纳米W粉可以促进膜厚增长,尤其在含0.5~2 g/L纳米W粉时,膜厚呈近似线性增长;但W粉在膜层表面的附着会导致粗糙度的增大。在纳米W粉参与下,微弧氧化膜中除了锐钛矿、金红石和Al_2TiO_5相之外,W含量也随电解液中颗粒含量的增加而提高。在6 g/L纳米W粉复合下,微弧氧化膜的摩擦系数、比磨损率分别减小了约13.33%和3.53%。结论 W粉颗粒以机械啮合附着在氧化膜表面,部分颗粒随熔融氧化物包裹进入膜层并发现熔化迹象。W粉含量为6 g/L时,制备的氧化膜表面质量有所改善,即微孔和裂纹等有所减少,耐磨性较佳,摩擦系数和比磨损率较不含W粉的膜层均有所减小。  相似文献   

14.
采用复合电沉积的方法,在一定的工艺条件下制备出Ni-SiC复合镀层。通过摩擦磨损试验、电化学腐蚀试验,并利用扫描电镜观察镀层的磨损和腐蚀形貌,综合分析了SiC颗粒大小对镀层性能的影响。结果表明:当SiC粒径为2μm,添加量为60 g.L-1时,镀层的显微硬度最高,耐磨性能最佳;复合镀层的耐蚀性比纯镍镀层和钢基体优越,但随着SiC粒径的增大,镀层的耐蚀性反而有所下降。  相似文献   

15.
在电解液中加入不同浓度石墨烯添加剂,通过微弧氧化在ZL109铝合金表面制备了石墨烯复合陶瓷膜,通过测厚仪和硬度计对膜层进行检测;然后对最佳浓度处理试件进行摩擦磨损试验,分析其摩擦因数、表面形貌以评价石墨烯添加剂对微弧氧化复合陶瓷膜摩擦性能的影响和作用机理。结果表明:石墨烯添加剂的加入使微弧氧化膜层具有更加优异表面性能和抗磨减摩性能,在浓度为6 g/L时膜层厚度达29.68 μm,硬度达到990.12 HV0.3,摩擦因数稳定在0.19,较普通陶瓷膜摩擦因数显著降低,达34.48%。在磨擦过程中,石墨烯对摩擦副表面的凹槽和划痕进行了填充,表面珩磨纹更加细密;同时,复合添加剂在磨擦过程中形成了C元素薄膜,起到了自修复作用。  相似文献   

16.
对石墨烯与各种材料的复合涂层进行了详细的介绍,主要包括金属-石墨烯复合涂层的制备方式、制备工艺、石墨烯的分散性以及石墨烯的添加对涂层性能的影响.电沉积、化学镀和电刷镀等制备方式都可以获得均匀致密的复合涂层,石墨烯的加入细化了涂层的晶粒,使涂层的微观形貌发生了一定的改变.石墨烯作为第二相粒子添加时,机械超声分散效果较差,一般通过添加表面活性剂再配合机械超声分散的方式来分散石墨烯,表面活性剂中的阴离子活性剂与阳离子活性剂配合使用分散效果较好.另外,还有一种保持石墨烯在溶液中浓度动态平衡的方法也有较好的效果.石墨烯作为第二相粒子加入金属涂层中,增强了金属涂层的导热、导电、耐磨、硬度和耐腐蚀等方面性能.最后,分析展望了金属与石墨烯复合涂层的发展趋势.  相似文献   

17.
镁合金表面超声微弧氧化载氟生物涂层耐磨性和耐蚀性   总被引:1,自引:1,他引:0  
目的提高医用镁合金微弧氧化涂层的耐蚀性、耐磨性,并赋予涂层抗菌性和生物活性。方法镁合金表面采用超声微弧氧化技术,在镀液中加入0.4、1.4、2.4、3.4 g/L的Na F,制备载氟生物涂层。通过SEM观察载氟对涂层表面形貌的影响,分析涂层的主要元素变化,进行了涂层厚度、孔隙率、拉伸强度的测定,并进行了摩擦磨损实验、电化学腐蚀实验、覆膜抗菌实验,评价了不同载氟生物涂层的结合性能、耐磨性能、耐蚀性和抗菌性。结果适量载氟生物涂层表面分布了均匀的孔隙。随着NaF浓度的增加,涂层中氟元素的含量升高,涂层厚度也随之增加,且涂层的结合强度提高了3.5~10.0 MPa。氟元素可促进涂层表面氧化物反应膜的形成,有利于减轻粘着磨损,使摩擦系数降低了0.17~0.35。载氟涂层的自腐蚀电位提高了95~170 m V,而自腐蚀电流降低约两个数量级,涂层抗菌率为61%~76%。结论超声微弧氧化镀液中添加Na F,提高了涂层结合强度、耐磨性、耐腐蚀性,涂层具有一定的抗菌性,实现了生物涂层的多功能性。  相似文献   

18.
目的探讨镍基金属陶瓷涂层在海水中的耐腐蚀磨损性能。方法采用激光熔覆技术在45钢表面制备了1.1 mm厚的镍基金属陶瓷涂层。采用电化学测试系统,对比分析了涂层的耐蚀性。采用往复式摩擦磨损试验机,测量了涂层在干摩擦及海水环境下的摩擦系数。采用扫描电镜等手段分析了涂层和磨痕的表面形貌。结果镍基金属陶瓷涂层的表面硬度约为基体的3倍,且硬度较均匀。在结合区开始,硬度剧烈下降,直至降为基体硬度。在3.5%Na Cl溶液中,镍基金属陶瓷涂层的腐蚀倾向低于316L不锈钢及316L堆焊层,而腐蚀速率介于两者之间。干摩擦条件下,镍基金属陶瓷涂层明显降低了基体的摩擦系数(从0.58降低至0.49)和磨损量(降低了50%)。与干摩擦实验相比,人工海水明显降低了镍基金属陶瓷涂层的摩擦系数(从0.49降低至0.37)和磨损量(降低了40%)。结论由于具有良好的耐蚀性和较高的硬度,镍基金属陶瓷涂层在人工海水中表现出了良好的耐磨耐蚀性能。磨损过程中,人工海水的冷却、润滑作用和其中盐类的隔离作用,有效改善了摩擦界面的接触状态,提高了镍基金属陶瓷涂层的耐磨性。  相似文献   

19.
目的强化Ni基镀层并确定Al_2O_3尺寸对复合镀层性能的影响。方法在以硬度为评价标准的最佳工艺条件下,制备了三种尺寸的Al2O3(微米级、50 nm、30 nm)复合镀层,研究分析了不同尺寸Al_2O_3复合镀层的表面形貌、显微硬度、耐磨、耐蚀等性能。结果纳米复合镀层的表面形貌比微米复合镀层更光滑、平整、致密,晶粒更细小。Al_2O_3微粒尺寸越小,镀层越致密。纳米复合镀层的显微硬度、耐磨性能、耐蚀性能、抗高温氧化等性能均优于微米复合镀层及纯Ni镀层。热处理后的纳米复合镀层表面更加平整致密,热处理能显著提高镀层的显微硬度。50 nm复合镀层在保温温度为400℃时达显微硬度最大值461HV,30 nm复合镀层在保温温度为500℃时达显微硬度最大值496HV。热处理对纳米复合镀层的耐磨性能改善不明显。结论 Al_2O_3的尺寸越小,复合镀层的性能越好。  相似文献   

20.
铸铁电刷镀 Ni-P 和 Ni 镀层性能研究   总被引:3,自引:2,他引:1  
目的研究利用电刷镀技术对铸铁表面进行刷镀修复。方法在铸铁表面电刷镀Ni和Ni-P两种镀层,观察镀层的表面形貌,分析镀层的物相组成,检测镀层结合力、耐磨性及耐蚀性等性能。结果在铸铁表面获得了结合紧密且晶粒大小均匀、致密的Ni-P刷镀层。Ni刷镀层较Ni-P刷镀层晶粒细小,具有较多孔洞,结构疏松。在相同刷镀时间下,Ni-P刷镀层厚度约为0.1 mm,是Ni刷镀层的2倍;与基体的结合力为85 N,而Ni刷镀层结合力为48 N。Ni-P和Ni刷镀层均主要由Ni,Fe10.8Ni和Fe Ni3组成,并含有少量的铜。Ni-P刷镀层的磨损质量和磨损体积最小,具有更好的耐磨性能;Ni刷镀层由于较疏松,出现了较严重的粘着磨损和擦伤特征。Ni-P刷镀层的自腐蚀电位最高,腐蚀电流密度最小,具有较好的耐腐蚀性能。结论通过电刷镀可对铸铁表面进行修复,提高其耐蚀和耐磨性能,其中Ni-P刷镀层的修复效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号