首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用密度泛函理论B3P86方法,在6-31G(d,p)基组水平上,对木质素结构中的6种连接方式(β-O-4、α-O-4、4-O-5、β-1、α-1、5-5)的63个木质素模化物的醚键(C-O)和C-C键的键离解能EB进行了理论计算研究。分析了不同取代基对键离解能的影响以及键长与键离解能的相关性。计算结果表明,C-O键的键离解能通常比C-C键的小,在各种醚键中Cα-O键的平均键离解能最小,为182.7 kJ/mol;其次是β-O-4连接中的Cβ-O键,苯环和烷烃基上的取代基对醚键的键离解能有较强的弱化作用,C-O键的键长和键离解能的相关性较差。与C-O键相比,C-C键的键离解能受苯环上取代基的影响很小,而烷烃基上的取代基对C-C键的键离解能有较大的影响,C-C键的键离解能和键长之间存在较强的线性关系,C-C键的键长越长,其键离解能越小。  相似文献   

2.
Ab initio calculations have been applied to a series of linear alkynes and their lithioand cyano-derivatives. The calculations predict that the C-C and CC internuclear distances will depend on the length of the molecule, the position of the particular bond in the molecule, and the presence or absence of substituents. Although small changes in the σ-overlap population are observed, the variations in bond lengths call be attributed primarily to alterations in the π-overlap population. The HOMO and LUMO energies for the various related molecules are compared, and the total electronic energies are partitioned into bond contributions.  相似文献   

3.
Starting with the experimental results for the X-C bond lengths in this series of compounds, an attempt was made to explain the effect of the substituents R and Y on this bond length in the single molecules. Using the results of CNDO/2 calculations it can be shown why only the substituent Y has a dominant effect on the Si-C bond length in the silicon compounds, while the substituent R has a dominant effect on the C-C bond length in the carbon analogues.  相似文献   

4.
The equilibrium molecular structure of the octatetranyl anion, C8H(-), which has been recently detected in two astronomical environments, is investigated with the aid of both ab initio post-Hartree-Fock and density functional theory (DFT) calculations. The model chemistry adopted in this study was selected after a series of benchmark calculations performed on molecular acetylene for which accurate gas-phase structural data are available. Geometry optimizations performed at the CCSD/6-311+G(2d,p), QCISD/6-311+G(2d,p), and MP4(SDQ)/6-311+G(2d,p) levels of theory yield for C8H(-) an interesting polyyne-type structure that defies the chemical formula displaying a simple alternation of triple and single carbon-carbon bonds, [:C[triple bond]C-C[triple bond]C-C[triple bond]C-C[triple bond]CH](1-). In the optimized geometry of C8H(-), as one proceeds from the naked carbon atom on one side of the chain to the CH unit on the opposite side of the chain, the short (formally triple) carbon-carbon bonds decrease in length from 1.255 to 1.213 A whereas the long (formally single) carbon-carbon bonds increase (albeit only slightly) in length from 1.362 to 1.378 A (CCSD results). In striking contrast, both MP2 and DFT (B3LYP and PBE0) calculations fail in reproducing the pattern of the carbon-carbon bond lengths obtained with the CCSD, QCISD, and MP4 methods. The structures of three shorter n-even chains, C(n)H(-) (n = 2, 4, and 6), along with those of four n-odd compounds (n = 3, 5, 7, and 9) are also investigated at the CCSD/6-311+G(2d,p) level of theory.  相似文献   

5.
Although the C-H bond dissociation energies of alkanes have been widely employed as measures of radical stability, it is shown here that the assumptions needed for that conclusion are incompatible with experimental and computational data related to C-C bond dissociation energies. Calculations at the QCISD(T)/6-311+G(d,p) level on model systems show that 1,3 nonbonded interactions in alkanes are repulsive, whereas the conventional radical stabilization analysis of bond dissociation energies requires that they become more attractive with increasing steric bulk. This result puts a severe limit on the role that radical stabilization can play and indicates that another factor must be responsible for the observed variation in the C-H bond dissociation energies of alkanes.  相似文献   

6.
This paper explores the atomic contributions to the electronic vibrationless bond dissociation enthalpy (BDE) at 0 K of the central C-C bond in straight-chain alkanes (C(n)H(2n+2)) and trans-alkenes (C(n)H(2n)) with an even number of carbon atoms, where n=2, 4, 6, 8. This is achieved using the partitioning of the total molecular energy according to the quantum theory of atoms in molecules by comparing the atomic energies in the intact molecule and its dissociation products. The study is conducted at the MP2(full)6-311++G(d,p) level of theory. It is found that the bulk of the electronic energy necessary to sever a single C-C bond is not supplied by these two carbon atoms (the alpha-carbons) but instead by the atoms directly bonded to them. Thus, the burden of the electronic part of the BDE is primarily carried by the two hydrogens attached to each of the alpha-carbons and by the beta-carbons. The effect drops off rapidly with distance along the hydrocarbon chain. The situation is more complex in the case of the double bond in alkenes, since here the burden is shared between the alpha-carbons as well as the atoms directly bonded to them, namely, again the alpha-hydrogens and the beta-carbons. These observations may lead to a better understanding of the bond dissociation process and should be taken into account when locally dense basis sets are introduced to improve the accuracy of BDE calculations.  相似文献   

7.
Linear alkanes undergo different C?C bond chemistry (coupling or dissociation) thermally activated on anisotropic metal surfaces depending on the choice of the substrate material. Owing to the one‐dimensional geometrical constraint, selective dehydrogenation and C?C coupling (polymerization) of linear alkanes take place on Au(110) surfaces with missing‐row reconstruction. However, the case is dramatically different on Pt(110) surfaces, which exhibit similar reconstruction as Au(110). Instead of dehydrogenative polymerization, alkanes tend to dehydrogenative pyrolysis, resulting in hydrocarbon fragments. Density functional theory calculations reveal that dehydrogenation of alkanes on Au(110) surfaces is an endothermic process, but further C?C coupling between alkyl intermediates is exothermic. On the contrary, due to the much stronger C?Pt bonds, dehydrogenation on Pt(110) surfaces is energetically favorable, resulting in multiple hydrogen loss followed by C?C bond dissociation.  相似文献   

8.
The behavior of binary mixtures of linear symmetrical ethers and alkanes adsorbed to a graphite surface from the bulk liquid mixtures is described on the basis of differential scanning calorimetry (DSC) data. Both the ethers and the alkanes are found to form solid monolayers when adsorbed from the liquid. In addition, the monolayer mixing behavior is addressed. The results indicate that there is good, essentially ideal, mixing in the monolayers for ethers and alkanes of the same overall chain length, where the chain length is equal to the total number of carbon and oxygen atoms in the molecule. However, a difference in chain length of more than one atom results in a variation of mixing behavior from nonideal mixing (for long pairs) to phase separation (for short pairs) on the graphite surface. Hence, we conclude that it is the relative chain lengths that control mixing behavior. The results are quantified using a regular solution model with a correction for preferential adsorption. The phase behavior of the mixed monolayers is also compared to the behavior of the bulk. Interestingly, we observe mixtures where the bulk and monolayer behavior are quite different, for example, phase separation in the bulk but essentially ideal mixing in the monolayer for mixtures of ethers and alkanes with the same chain lengths. At present, we attribute this mixing in the monolayer to dilution of the unfavorable ether oxygen-ether oxygen lone pair interactions by the coadsorbed alkanes. In addition, we find evidence for the preferential adsorption of the alkane over the ether. For example, heptane is preferentially adsorbed over dibutyl ether even though it contains two fewer atoms in the molecular chain. This contrasts with the preferential adsorption of alcohols over alkanes reported previously (Messe, L.; Perdigon, A.; Clarke, S. M.; Inaba, A.; Arnold, T. Langmuir 2005, 21, 5085-5093).  相似文献   

9.
The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F(3)C(CF(2))(n-1)(CH(2))(m-1)CH(3) are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen.  相似文献   

10.
Igor Novak 《Tetrahedron letters》2011,52(51):6982-6984
The molecular structures and energies of hydrocarbons containing very short nominally single C-C bonds were calculated by high-level ab initio calculations. The ‘squeeze energies’ (SqEs) pertaining to the shortening of central C-C bonds are found to correlate very well with central short C-C bond lengths.  相似文献   

11.
[reaction: see text] The temperature dependence of the dissociation of dimers formed from highly stabilized carbon-centered radicals has been examined. Analysis of the data yields the bond dissociation energy (BDE) for the central head-to-head C-C bond in these compounds. For example, for the dimer derived from 3-phenyl-2-coumaranone, BDE is 23.6 kcal/mol and the C-C bond length 1.596 A, a rather long value for a sigma bond.  相似文献   

12.
Acenapthalene, pyracene, and dihydropyracylene attached to two units of spiroacridan are a novel class of hexaphenylethane (HPE) derivatives that have an ultralong Csp3-Csp3 bond (1.77-1.70 A). These sterically challenged molecules were cleanly prepared by C-C bond formation through two-electron reduction from the less-hindered dications. These ultralong bonds were realized based on several molecular-design concepts including enhanced "front strain" through "multiclamping" by means of fusing or bridging aryl groups in the HPE molecule. The lengths of these ultralong bonds and their relation to the conformation (torsional angle) were also validated by means of theoretical calculations. Bond-fission experiments revealed that the bonds are more easily cleaved than standard covalent bonds to produce the corresponding dication upon oxidation with an increase in the length of the C-C bond.  相似文献   

13.
The detailed geometrical structures of zigzag and armchair type single-walled carbon nanotubes (SWCNTs) with infinite tubular length were investigated using localized Gaussian type orbital-periodic boundary condition-density functional theory (LGTO-PBC-DFT) method. The structures of (n, 0) zigzag SWCNTs were optimized for n = 5-21, (n, n) armchair SWCNTs for n = 3-12. For comparison, the optimized geometry of a two-dimensional graphite sheet was also calculated. It was found that the optimized structures of the SWCNTs showed two C-C bond lengths that decrease with an increase in the tubular diameter. More specifically, the two bond lengths converged with those found in the two-dimensional graphite sheet. We also found a degeneracy in the highest occupied crystal orbitals if identical bond lengths were employed for the zigzag SWCNTs and the two-dimensional graphite sheet. This implies that the two different bond lengths found in the zigzag SWCNTs and the two-dimensional graphite sheet are probably due to the Jahn-Teller effect. The armchair SWCNTs show two slightly different bond lengths if the diameter is less than 12 A; otherwise they are almost identical, approaching the longer bond length of the two-dimensional graphite sheet. This can be due to the fact that the armchair SWCNTs do not have degeneracy in occupied crystal orbitals for identical C-C bond lengths. The crossing point of the conducting and valence bands of each armchair SWCNT were also calculated and show a diameter dependence in which the deviation from 2pi/3a decreases as diameter increases.  相似文献   

14.
The interfacial properties for a carbon nanotube on a Ni (001) surface are modeled by a piece of vertical graphene standing on a Ni (001) surface. The interaction between the graphene and the nickel (001) surface is investigated using density functional theory (DFT) calculations. Zigzag type graphene can stand on the hollow sites of the Ni (001) surface along the [linear span]110[linear span] direction. For such a configuration, Ni (001)-graphene interfacial mechanical properties are studied, and we find that Ni-Ni bonds near the interface will break first under tensile strain. C-C bond lengths near the interface are longer than the C-C bonds of graphene, and the charge density of those bonds decrease due to the formation of interfacial Ni-C bonds. It suggests that C-C bonds near the interface may break during the carbon nanotube growth processes.  相似文献   

15.
16.
Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a no bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long time dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths N(c) are calculated from the packing length of the chains. These are combined with a local mobility mu determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients D(c)=muN(c). We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients DD(c) as a function of reduced chain length NN(c). The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length N=20 at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends.  相似文献   

17.
The unimolecular decomposition processes of ethylene glycol have been investigated with the QCISD(T) method with geometries optimized at the B3LYP/6-311++G(d,p) level. Among the decomposition channels identified, the H(2)O-elimination channels have the lowest barriers, and the C-C bond dissociation is the lowest-energy dissociation channel among the barrierless reactions (the direct bond cleavage reactions). The temperature and pressure dependent rate constant calculations show that the H(2)O-elimination reactions are predominant at low temperature, whereas at high temperature, the direct C-C bond dissociation reaction is dominant. At 1 atm, in the temperature range 500-2000 K, the calculated rate constant is expressed to be 7.63 × 10(47)T(-10.38) exp(-42262/T) for the channel CH(2)OHCH(2)OH → CH(2)CHOH + H(2)O, and 2.48 × 10(51)T(-11.58) exp(-43593/T) for the channel CH(2)OHCH(2)OH → CH(3)CHO + H(2)O, whereas for the direct bond dissociation reaction CH(2)OHCH(2)OH → CH(2)OH + CH(2)OH the rate constant expression is 1.04 × 10(71)T(-16.16) exp(-52414/T).  相似文献   

18.
Bond constraint algorithms for molecular dynamics typically take, as the target constraint lengths, the values of the equilibrium bond lengths defined in the potential. In Langevin form, the equations of motion are temperature dependent, which gives the average value for the individual bond lengths a temperature dependence. In addition to this, locally constant force fields can shift the local equilibrium bond lengths. To restore the average bond lengths in constrained integration to their unconstrained values, we suggest changing the constraint length used by popular constraint methods such as RATTLE [H. C. Andersen, J. Comput. Phys. 52, 23 (1983)] at each step. This allows us to more accurately capture the equilibrium bond length changes (with respect to the potential) due to the local equilibration and temperature effects. In addition, the approximations to the unconstrained nonbonded energies are closer using the dynamic constraint method than a traditional fixed constraint algorithm. The mechanism for finding the new constrained lengths involves one extra calculation of the bonded components of the force, and therefore adds O(N) time to the constraint algorithm. Since most molecular dynamics calculations are dominated by the O(N2) nonbonded forces, this new method does not take significantly more time than a fixed constraint algorithm.  相似文献   

19.
Polyols, a typical type of alcohol containing multiple hydroxyl groups, are being regarded as a new generation of a green energy platform. In this paper, the decomposition mechanisms for three polyol molecules, i.e., 1,2-propanediol, 1,3-propanediol, and glycerol, have been investigated by quantum chemistry calculations. The potential energy surfaces of propanediols and glycerol have been built by the QCISD(T) and CBS-QB3 methods, respectively. For the three molecules studied, the H(2)O-elimination and C-C bond dissociation reactions show great importance among all of the unimolecular decomposition channels. Rate constant calculations further demonstrate that the H(2)O-elimination reactions are predominant at low temperature and pressure, whereas the direct C-C bond dissociation reactions prevail at high temperature and pressure. The temperature and pressure dependence of calculated rate constants was demonstrated by the fitted Arrhenius equations. This work aims to better understand the thermal decomposition process of polyols and provide useful thermochemical and kinetic data for kinetic modeling of polyols-derived fuel combustion.  相似文献   

20.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号